# \dontshow{
# EXAMPLE 1. One-sample t test
ttest1 <- t_test(therapeutic, mu = 5)
print(ttest1)
# confirmatory Bayesian one sample t test
BF1 <- BF(ttest1, hypothesis = "mu = 5")
summary(BF1)
# exploratory Bayesian one sample t test
BF(ttest1)
# EXAMPLE 2. ANOVA
aov1 <- aov(price ~ anchor * motivation,data = tvprices)
BF1 <- BF(aov1, hypothesis = "anchorrounded = motivationlow;
anchorrounded < motivationlow")
summary(BF1)
# EXAMPLE 3. Logistic regression
fit <- glm(sent ~ ztrust + zfWHR + zAfro + glasses + attract + maturity +
tattoos, family = binomial(), data = wilson)
BF1 <- BF(fit, hypothesis = "ztrust > zfWHR > 0;
ztrust > 0 & zfWHR = 0")
summary(BF1)
# EXAMPLE 4. Correlation analysis
set.seed(123)
cor1 <- cor_test(memory[1:20,1:3])
BF1 <- BF(cor1)
summary(BF1)
BF2 <- BF(cor1, hypothesis = "Wmn_with_Im > Wmn_with_Del > 0;
Wmn_with_Im = Wmn_with_Del = 0")
summary(BF2)
# EXAMPLE 5. Bayes factor testing on a named vector
# A Poisson regression model is used to illustrate the computation
# of Bayes factors with a named vector as input
poisson1 <- glm(formula = breaks ~ wool + tension,
data = datasets::warpbreaks, family = poisson)
# extract estimates, error covariance matrix, and sample size:
estimates <- poisson1$coefficients
covmatrix <- vcov(poisson1)
samplesize <- nobs(poisson1)
# compute Bayes factors on equal/order constrained hypotheses on coefficients
BF1 <- BF(estimates, Sigma = covmatrix, n = samplesize, hypothesis =
"woolB > tensionM > tensionH; woolB = tensionM = tensionH")
summary(BF1)
# }
# \donttest{
# EXAMPLE 1. One-sample t test
ttest1 <- bain::t_test(therapeutic, mu = 5)
print(ttest1)
# confirmatory Bayesian one sample t test
BF1 <- BF(ttest1, hypothesis = "mu = 5")
summary(BF1)
# exploratory Bayesian one sample t test
BF(ttest1)
# EXAMPLE 2. ANOVA
aov1 <- aov(price ~ anchor * motivation, data = tvprices)
# check the names of the model parameters
names(aov1$coefficients)
BF1 <- BF(aov1, hypothesis = "anchorrounded = motivationlow;
anchorrounded < motivationlow;
anchorrounded > motivationlow")
summary(BF1)
# EXAMPLE 3. Logistic regression
fit <- glm(sent ~ ztrust + zfWHR + zAfro + glasses + attract + maturity +
tattoos, family = binomial(), data = wilson)
BF1 <- BF(fit, hypothesis = "ztrust > (zfWHR, zAfro) > 0;
ztrust > 0 & zfWHR=zAfro= 0")
summary(BF1)
# EXAMPLE 4. Correlation analysis
set.seed(123)
cor1 <- cor_test(memory[1:20,1:3])
BF1 <- BF(cor1)
summary(BF1)
BF2 <- BF(cor1, hypothesis = "Wmn_with_Im > Wmn_with_Del > 0;
Wmn_with_Im = Wmn_with_Del = 0")
summary(BF2)
# EXAMPLE 5. Bayes factor testing on a named vector
# We illustrate the computation of Bayes factors using a named vector
# as input on a Poisson regression model
poisson1 <- glm(formula = breaks ~ wool + tension,
data = datasets::warpbreaks, family = poisson)
# extract estimates, error covariance matrix, and sample size,
# from fitted object
estimates <- poisson1$coefficients
covmatrix <- vcov(poisson1)
samplesize <- nobs(poisson1)
# compute Bayes factors on equal/order constrained hypotheses on coefficients
BF1 <- BF(estimates, Sigma = covmatrix, n = samplesize, hypothesis =
"woolB > tensionM > tensionH; woolB = tensionM = tensionH")
summary(BF1)
# }
Run the code above in your browser using DataLab