Learn R Programming

⚠️There's a newer version (2.1.5) of this package.Take me there.

BGGM (version 2.0.3)

Bayesian Gaussian Graphical Models

Description

Fit Bayesian Gaussian graphical models. The methods are separated into two Bayesian approaches for inference: hypothesis testing and estimation. There are extensions for confirmatory hypothesis testing, comparing Gaussian graphical models, and node wise predictability. These methods were recently introduced in the Gaussian graphical model literature, including Williams (2019) , Williams and Mulder (2019) , Williams, Rast, Pericchi, and Mulder (2019) .

Copy Link

Version

Install

install.packages('BGGM')

Monthly Downloads

681

Version

2.0.3

License

GPL-2

Maintainer

Donald Williams

Last Published

December 3rd, 2020

Functions in BGGM (2.0.3)

asd_ocd

Data: Autism and Obssesive Compulsive Disorder
BGGM-package

BGGM: Bayesian Gaussian Graphical Models
coef.estimate

Compute Regression Parameters for estimate Objects
bggm_missing

GGM: Missing Data
confirm

GGM: Confirmatory Hypothesis Testing
bma_posterior

Bayesian Model Averaged Posterior Distribution
coef.explore

Compute Regression Parameters for explore Objects
constrained_posterior

Constrained Posterior Distribution
bfi

Data: 25 Personality items representing 5 factors
Sachs

Data: Sachs Network
fisher_r_to_z

Fisher Z Transformation
estimate

GGM: Estimation
explore

GGM: Exploratory Hypothesis Testing
fisher_z_to_r

Fisher Z Back Transformation
depression_anxiety_t2

Data: Depression and Anxiety (Time 2)
ggm_compare_explore

GGM Compare: Exploratory Hypothesis Testing
mvn_imputation

Multivariate Normal Imputation
pcor_mat

Extract the Partial Correlation Matrix
ggm_compare_estimate

GGM Compare: Estimate
plot.roll_your_own

Plot roll_your_own Objects
convergence

MCMC Convergence
depression_anxiety_t1

Data: Depression and Anxiety (Time 1)
plot.select

Network Plot for select Objects
csws

Data: Contingencies of Self-Worth Scale (CSWS)
regression_summary

Summarary Method for Multivariate or Univarate Regression
predict.explore

Model Predictions for explore Objects
predict.var_estimate

Model Predictions for var_estimate Objects
ptsd_cor4

Data: Post-Traumatic Stress Disorder (Sample # 4)
pcor_sum

Partial Correlation Sum
pcor_to_cor

Compute Correlations from the Partial Correlations
gen_ordinal

Generate Ordinal and Binary data
ggm_compare_confirm

GGM Compare: Confirmatory Hypothesis Testing
ggm_compare_ppc

GGM Compare: Posterior Predictive Check
gss

Data: 1994 General Social Survey
iri

Data: Interpersonal Reactivity Index (IRI)
plot.summary.var_estimate

Plot summary.var_estimate Objects
plot.summary.select.explore

Plot summary.select.explore Objects
plot.pcor_sum

Plot pcor_sum Object
map

Maximum A Posteriori Precision Matrix
plot.predictability

Plot predictability Objects
ptsd

Data: Post-Traumatic Stress Disorder
select

S3 select method
plot.summary.estimate

Plot summary.estimate Objects
ifit

Data: ifit Intensive Longitudinal Data
ggm_search

Search Algorithm
plot.summary.explore

Plot summary.explore Objects
ptsd_cor2

Data: Post-Traumatic Stress Disorder (Sample # 2)
select.estimate

Graph Selection for estimate Objects
summary.coef

Summarize coef Objects
ptsd_cor3

Data: Post-Traumatic Stress Disorder (Sample # 3)
summary.estimate

Summary method for estimate.default objects
summary.var_estimate

Summary Method for var_estimate Objects
summary.select.explore

Summary Method for select.explore Objects
precision

Precision Matrix Posterior Distribution
select.ggm_compare_explore

Graph selection for ggm_compare_explore Objects
predict.estimate

Model Predictions for estimate Objects
select.var_estimate

Graph Selection for var.estimate Object
ptsd_cor1

Data: Post-Traumatic Stress Disorder (Sample # 1)
summary.explore

Summary Method for explore.default Objects
summary.ggm_compare_estimate

Summary method for ggm_compare_estimate objects
weighted_adj_mat

Extract the Weighted Adjacency Matrix
zero_order_cors

Zero-Order Correlations
plot.confirm

Plot confirm objects
plot.summary.ggm_compare_explore

Plot summary.ggm_compare_explore Objects
predictability

Predictability: Bayesian Variance Explained (R2)
plot.summary.ggm_compare_estimate

Plot summary.ggm_compare_estimate Objects
plot.ggm_compare_ppc

Plot ggm_compare_ppc Objects
women_math

Data: Women and Mathematics
print.BGGM

Print method for BGGM objects
var_estimate

VAR: Estimation
plot_prior

Plot: Prior Distribution
tas

Data: Toronto Alexithymia Scale (TAS)
posterior_samples

Extract Posterior Samples
select.ggm_compare_estimate

Graph Selection for ggm_compare_estimate Objects
rsa

Data: Resilience Scale of Adults (RSA)
roll_your_own

Compute Custom Network Statistics
select.explore

Graph selection for explore Objects
summary.ggm_compare_explore

Summary Method for ggm_compare_explore Objects
summary.predictability

Summary Method for predictability Objects