# BHMSMA multi-subject analysis for simulated (fMRI)
# data at 4 timepoints over an 8x8 grid (of a brain
# slice) for 3 subjects
set.seed(1)
n <- 3
grid <- 8
ntime <- 4
data <- array(rnorm(n*grid*grid*ntime),
dim=c(n,grid,grid,ntime))
designmat <- cbind(c(1,1,1,1),c(1,0,1,0))
k <- 2
analysis <- "multi"
BHMSMAmulti <- BHMSMA(n, grid, data, designmat,
k, analysis)
zlim = c(0,max(abs(BHMSMAmulti$GLMCoefStandardized)))
par(mfrow=c(1,2))
image( abs(BHMSMAmulti$GLMCoefStandardized[1,,,k]),
col=heat.colors(12),zlim=zlim,main="GLM coef map")
image( abs(BHMSMAmulti$GLMcoefposterior[1,,]),
col=heat.colors(12),zlim=zlim,main="GLM coef posterior map")
if (FALSE) {
# BHMSMA multi-subject analysis for simulated (fMRI)
# data at 100 timepoints over an 64x64 grid (of a
# brain slice) for 15 subjects
# (takes ~12s in a 2.8 GHz Quad-Core Intel Core i7 processor)
set.seed(1)
n <- 15
grid <- 64
ntime <- 100
data <- array(rnorm(n*grid*grid*ntime),
dim=c(n,grid,grid,ntime))
designmat <- cbind(rep(1,ntime),runif(ntime))
k <- 2
analysis <- "multi"
system.time({BHMSMAmulti <- BHMSMA(n,grid,data,
designmat,k,analysis)})
}
Run the code above in your browser using DataLab