Learn R Programming

BIFIEsurvey (version 1.5-0)

BIFIE.correl: Correlations and Covariances

Description

Computes correlations and covariances

Usage

BIFIE.correl(BIFIEobj, vars, group = NULL, group_values = NULL, se=TRUE)

## S3 method for class 'BIFIE.correl':
summary(object,digits=4, ...)

## S3 method for class 'BIFIE.correl':
coef(object,type=NULL, ...)

## S3 method for class 'BIFIE.correl':
vcov(object,type=NULL, ...)

Arguments

BIFIEobj
Object of class BIFIEdata
vars
Vector of variables for which statistics should be computed
group
Optional grouping variable(s)
group_values
Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.
se
Optional logical indicating whether statistical inference based on replication should be employed.
object
Object of class BIFIE.correl
digits
Number of digits for rounding output
type
If type="cov", then covariances instead of correlations are extracted.
...
Further arguments to be passed

Value

  • A list with following entries
  • stat.corData frame with correlation statistics
  • stat.covData frame with covariance statistics
  • cor_matrixList of estimated correlation matrices
  • cov_matrixList of estimated covariance matrices
  • outputExtensive output with all replicated statistics
  • ...More values

See Also

stats::cov.wt, intsvy::timss.rho, intsvy::timss.rho.pv, Hmisc::rcorr, miceadds::ma.wtd.corNA

Examples

Run this code
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt=  data.timss1[[1]]$TOTWGT ,
           wgtrep=data.timssrep[, -1 ] )

# Correlations splitted by gender
res1 <- BIFIE.correl( bdat , vars=c("lang" , "books" , "migrant" ) , 
              group="female" , group_values=0:1 )
summary(res1)  

# Correlations splitted by gender: no statistical inference (se=FALSE)
res1a <- BIFIE.correl( bdat , vars=c("lang" , "books" , "migrant" ) , 
              group="female" , group_values=0:1 , se=FALSE)
summary(res1a)

Run the code above in your browser using DataLab