#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
# Inference for correlations and derived parameters
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt= data.timss1[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] )
# compute correlations
res1 <- BIFIE.correl( bdat , vars=c("ASSSCI" , "ASMMAT" , "books" , "migrant" ) )
summary(res1)
res1$parnames
## [1] "ASSSCI_ASSSCI" "ASSSCI_ASMMAT" "ASSSCI_books" "ASSSCI_migrant"
## [5] "ASMMAT_ASMMAT" "ASMMAT_books" "ASMMAT_migrant" "books_books"
## [9] "books_migrant" "migrant_migrant"
# define four derived parameters
derived.parameters <- list(
# squared correlation of science and mathematics
"R2_sci_mat" = ~ 0 + I( 100* ASSSCI_ASMMAT^2 ) ,
# partial correlation of science and mathematics controlling for books
"parcorr_sci_mat" = ~ 0 + I( ( ASSSCI_ASMMAT - ASSSCI_books * ASMMAT_books ) /
sqrt(( 1 - ASSSCI_books^2 ) * ( 1-ASMMAT_books^2 ) ) ) ,
# original correlation science and mathematics (already contained in res1)
"cor_sci_mat" = ~ 0 + I( ASSSCI_ASMMAT ) ,
# original correlation books and migrant
"cor_book_migra" = ~ 0 + I( books_migrant )
)
# statistical inference for derived parameters
res2 <- BIFIE.derivedParameters( res1 , derived.parameters )
summary(res2)
Run the code above in your browser using DataLab