#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt= data.timss1[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] )
#**** Model 1: Linear regression for mathematics score
mod1 <- BIFIE.linreg( bdat , dep= "ASMMAT" , pre=c("one","books","migrant") ,
group= "female" )
summary(mod1)
# same model but specified with R formulas
mod1a <- BIFIE.linreg( bdat , formula = ASMMAT ~ books + migrant ,
group= "female" , group_values = 0:1 )
summary(mod1a)
# compare result with lm function and first imputed dataset
dat1 <- data.timss1[[1]]
mod1b <- lm( ASMMAT ~ 0+as.factor(female)+as.factor(female):books+as.factor(female):migrant ,
data= dat1 , weights=dat1$TOTWGT )
summary(mod1b)
#**** Model 2: Like Model 1, but books is now treated as a factor
mod2 <- BIFIE.linreg( bdat , formula = ASMMAT ~ as.factor(books) + migrant )
summary(mod2)
Run the code above in your browser using DataLab