#############################################################################
# EXAMPLE 1: TIMSS dataset | Logistic regression
#############################################################################
data(data.timss2)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss2 , wgt= data.timss2[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] )
#**** Model 1: Logistic regression - prediction of migrational background
res1 <- BIFIE.logistreg( BIFIEobj=bdat, dep="migrant", pre= c("one","books","lang"),
group="female" , se=FALSE )
summary(res1)
# same model, but with formula specification and standard errors
res1a <- BIFIE.logistreg( BIFIEobj=bdat, formula= migrant ~ books + lang ,
group="female" )
summary(res1a)
#############################################################################
# SIMULATED EXAMPLE 2: Comparison of glm and BIFIE.logistreg
#############################################################################
#*** (1) simulate data
set.seed(987)
N <- 300
x1 <- rnorm( N )
x2 <- runif( N)
ypred <- -0.75+.2*x1 + 3*x2
y <- 1*( plogis(ypred) > runif(N) )
data <- data.frame( "y" = y , "x1"=x1 , "x2"=x2 )
#*** (2) estimation logistic regression using glm
mod1 <- glm( y ~ x1 + x2 , family="binomial")
#*** (3) estimation logistic regression using BIFIEdata
# create BIFIEdata object by defining 30 Jackknife zones
bifiedata <- BIFIE.data.jack( data , jktype="JK_RANDOM" , ngr=30 )
summary(bifiedata)
# estimate logistic regression
mod2 <- BIFIE.logistreg( bifiedata , formula = y ~ x1+x2 )
#*** (4) compare results
summary(mod2) # BIFIE.logistreg
summary(mod1) # glm
Run the code above in your browser using DataLab