Learn R Programming

BIFIEsurvey (version 1.5-0)

BIFIE.logistreg: Logistic Regression

Description

Computes logistic regression.

Usage

BIFIE.logistreg(BIFIEobj, dep=NULL , pre=NULL, formula=NULL , 
    group = NULL, group_values = NULL, se=TRUE, eps = 1E-8 , maxiter=100)

## S3 method for class 'BIFIE.logistreg':
summary(object,digits=4,...)

## S3 method for class 'BIFIE.logistreg':
coef(object,...)

## S3 method for class 'BIFIE.logistreg':
vcov(object,...)

Arguments

BIFIEobj
Object of class BIFIEdata
dep
String for the dependent variable in the regression model
pre
Vector of predictor variables. If the intercept should be included, then use the variable one for specifying it (see Examples).
formula
An Rformula object which can be applied instead of providing dep and pre. Note that there is additional computation time needed for model matrix creation.
group
Optional grouping variable(s)
group_values
Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.
se
Optional logical indicating whether statistical inference based on replication should be employed.
eps
Convergence criterion for parameters
maxiter
Maximum number of iterations
object
Object of class BIFIE.logistreg
digits
Number of digits for rounding output
...
Further arguments to be passed

Value

  • A list with following entries
  • statData frame with regression coefficients
  • outputExtensive output with all replicated statistics
  • ...More values

See Also

survey::svyglm, stats::glm For linear regressions see BIFIE.linreg.

Examples

Run this code
#############################################################################
# EXAMPLE 1: TIMSS dataset | Logistic regression
#############################################################################

data(data.timss2)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss2 , wgt=  data.timss2[[1]]$TOTWGT ,
                      wgtrep=data.timssrep[, -1 ] )

#**** Model 1: Logistic regression - prediction of migrational background
res1 <- BIFIE.logistreg( BIFIEobj=bdat, dep="migrant", pre= c("one","books","lang"),
            group="female" , se=FALSE )
summary(res1)

# same model, but with formula specification and standard errors
res1a <- BIFIE.logistreg( BIFIEobj=bdat, formula= migrant ~ books + lang , 
                 group="female"  )
summary(res1a)

#############################################################################
# SIMULATED EXAMPLE 2: Comparison of glm and BIFIE.logistreg
#############################################################################

#*** (1) simulate data
set.seed(987)
N <- 300
x1 <- rnorm( N )
x2 <- runif( N)
ypred <- -0.75+.2*x1 + 3*x2
y <- 1*( plogis(ypred) > runif(N) )
data <- data.frame( "y" = y , "x1"=x1 , "x2"=x2 )

#*** (2) estimation logistic regression using glm
mod1 <- glm( y ~ x1 + x2 , family="binomial")

#*** (3) estimation logistic regression using BIFIEdata
# create BIFIEdata object by defining 30 Jackknife zones
bifiedata <- BIFIE.data.jack( data , jktype="JK_RANDOM" , ngr=30 )
summary(bifiedata)
# estimate logistic regression
mod2 <- BIFIE.logistreg( bifiedata , formula = y ~ x1+x2 )

#*** (4) compare results
summary(mod2)	# BIFIE.logistreg
summary(mod1)   # glm

Run the code above in your browser using DataLab