Learn R Programming

BIFIEsurvey (version 1.5-0)

BIFIE.mva: Missing Value Analysis

Description

Conducts a missing value analysis.

Usage

BIFIE.mva( BIFIEobj , missvars , covariates=NULL , se=TRUE )

## S3 method for class 'BIFIE.mva':
summary(object,digits=4,...)

Arguments

BIFIEobj
Object of class BIFIEdata
missvars
Vector of variables for which missing value statistics should be computed
covariates
Vector of variables which work as covariates
se
Optional logical indicating whether statistical inference based on replication should be employed.
object
Object of class BIFIE.correl
digits
Number of digits for rounding output
...
Further arguments to be passed

Value

  • A list with following entries
  • stat.mvaData frame with missing value statistics
  • res_listList with extensive output splitted according to each variable in missvars
  • ...More values

Examples

Run this code
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
BIFIEdata <- BIFIE.data( data.list=data.timss1 , wgt=  data.timss1[[1]]$TOTWGT ,
                wgtrep=data.timssrep[, -1 ] )

# missing value analysis for "scsci" and "books" and three covariates
res1 <- BIFIE.mva( BIFIEdata , missvars=c("scsci" , "books" ) , 
             covariates=c("ASMMAT" , "female" , "ASSSCI") )
summary(res1)

# missing value analysis without statistical inference and without covariates
res2 <- BIFIE.mva( BIFIEdata , missvars=c("scsci" , "books" ) , se=FALSE)
summary(res2)

Run the code above in your browser using DataLab