#############################################################################
# EXAMPLE 1: Path model data.bifie01
#############################################################################
data(data.bifie01)
dat <- data.bifie01
# create dataset with replicate weights and plausible values
bifieobj <- BIFIE.data.jack( data=dat , jktype="JK_TIMSS" , jkzone = "JKCZONE" ,
jkrep="JKCREP" , wgt="TOTWGT" , pv_vars = c("ASMMAT","ASSSCI") )
#**************************************************************
#*** Model 1: Path model
lavmodel1 <- "
ASMMAT ~ ASBG07A + ASBG07B + ASBM03 + ASBM02A + ASBM02E
# define latent variable with 2nd and 3rd item in reversed scoring
ASBM03 =~ 1*ASBM03A + (-1)*ASBM03B + (-1)*ASBM03C + 1*ASBM03D
ASBG07A ~ ASBM02E
ASBG07A ~~ .2*ASBG07A # measurement error variance of .20
ASBM02E ~~ .45*ASBM02E # measurement error variance of .45
ASBM02E ~ ASBM02A + ASBM02B
"
#--- Model 1a: model calculated by gender
mod1a <- BIFIE.pathmodel( bifieobj , lavmodel1 , group = "female" )
summary(mod1a)
#--- Model 1b: Input of some known reliabilities
reliability <- c( "ASBM02B" = .6 , "ASBM02A" = .8 )
mod1b <- BIFIE.pathmodel( bifieobj , lavmodel1 , reliability=reliability )
summary(mod1b)
#**************************************************************
#*** Model 2: Linear regression with errors in predictors
# specify lavaan model
lavmodel2 <- "
ASMMAT ~ ASBG07A + ASBG07B + ASBM03A
ASBG07A ~~ .2*ASBG07A
"
mod2 <- BIFIE.pathmodel( bifieobj , lavmodel2 )
summary(mod2)
Run the code above in your browser using DataLab