Learn R Programming

BIFIEsurvey (version 1.5-0)

BIFIE.univar: Univariate Descriptive Statistics (Means and Standard Deviations)

Description

Computes some univariate descriptive statistics (means and standard deviations).

Usage

BIFIE.univar(BIFIEobj, vars, group = NULL, group_values = NULL, se=TRUE)

## S3 method for class 'BIFIE.univar':
summary(object,digits=3,...)

## S3 method for class 'BIFIE.univar':
coef(object,...)

## S3 method for class 'BIFIE.univar':
vcov(object,...)

Arguments

BIFIEobj
Object of class BIFIEdata
vars
Vector of variables for which statistics should be computed
group
Optional grouping variable(s)
group_values
Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.
se
Optional logical indicating whether statistical inference based on replication should be employed.
object
Object of class BIFIE.univar
digits
Number of digits for rounding output
...
Further arguments to be passed

Value

  • A list with following entries
  • statData frame with univariate statistics
  • stat_MData frame with means
  • stat_SDData frame with standard deviations
  • outputExtensive output with all replicated statistics
  • ...More values

See Also

See BIFIE.univar.test for a test of equal means and effect sizes $\eta$ and $d$. survey::svymean, intsvy::timss.mean, intsvy::timss.mean.pv, stats::weighted.mean, Hmisc::wtd.mean, miceadds::ma.wtd.meanNA survey::svyvar, Hmisc::wtd.var, miceadds::ma.wtd.sdNA, miceadds::ma.wtd.covNA

Examples

Run this code
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt=  data.timss1[[1]]$TOTWGT ,
           wgtrep=data.timssrep[, -1 ] )

# compute descriptives for plausible values
res1 <- BIFIE.univar( bdat , vars = c("ASMMAT","ASSSCI","books") )
summary(res1)

# split descriptives by number of books
res2 <- BIFIE.univar( bdat , vars = c("ASMMAT","ASSSCI") , group="books" ,
            group_values=1:5)
summary(res2)

#############################################################################
# EXAMPLE 2: TIMSS dataset with missings
#############################################################################

data(data.timss2)
data(data.timssrep)

# use first dataset with missing data from data.timss2
bdat1 <- BIFIE.data( data.list=data.timss2[[1]] , wgt=  data.timss2[[1]]$TOTWGT ,
               wgtrep=data.timssrep[, -1 ])

# some descriptive statistics without statistical inference
res1a <- BIFIE.univar( bdat1 , vars = c("ASMMAT","ASSSCI","books") , se=FALSE)
# descriptive statistics with statistical inference
res1b <- BIFIE.univar( bdat1 , vars = c("ASMMAT","ASSSCI","books") )
summary(res1a)
summary(res1b)

# split descriptives by number of books
res2 <- BIFIE.univar( bdat1 , vars = c("ASMMAT","ASSSCI") , group="books" )
# Note that if group_values is not specified as an argument it will be
# automatically determined by the observed frequencies in the dataset 
summary(res2)

Run the code above in your browser using DataLab