Learn R Programming

BIFIEsurvey (version 1.5-0)

BIFIE.univar.test: Analysis of Variance and Effect Sizes for Univariate Statistics

Description

Computes a Wald test which tests equality of means (univariate analysis of variance). In addition, the $d$ and $\eta$ effect sizes are computed.

Usage

BIFIE.univar.test(BIFIE.method , wald_test=TRUE)

## S3 method for class 'BIFIE.univar.test':
summary(object,digits=4,...)

Arguments

BIFIE.method
Object of class BIFIE.univar
wald_test
Optional logical indicating whether a Wald test should be performed.
object
Object of class BIFIE.univar.test
digits
Number of digits for rounding output
...
Further arguments to be passed

Value

  • A list with following entries
  • stat.FData frame with $F$ statistic for Wald test
  • stat.etaData frame with $\eta$ effect size and its inference
  • stat.dstatData frame with Cohen's $d$ effect size and its inference
  • ...More values

See Also

BIFIE.univar

Examples

Run this code
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt=  data.timss1[[1]]$TOTWGT ,
           wgtrep=data.timssrep[, -1 ] )

#**** Model 1: 3 variables splitted by book
res1 <- BIFIE.univar( bdat , vars=c("ASMMAT", "ASSSCI","scsci") , group="books" )
summary(res1)
# analysis of variance
tres1 <- BIFIE.univar.test(res1)
summary(tres1)

#**** Model 2: One variable splitted by gender
res2 <- BIFIE.univar( bdat , vars=c("ASMMAT") , group="female" )
summary(res2)
# analysis of variance
tres2 <- BIFIE.univar.test(res2)
summary(tres2)

#**** Model 3: Univariate statistic: math
res3 <- BIFIE.univar( bdat , vars=c("ASMMAT") )
summary(res3)
tres3 <- BIFIE.univar.test(res3)

Run the code above in your browser using DataLab