#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIE.data( data.list=data.timss1 , wgt= data.timss1[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] )
#******************
#*** Model 1: Linear regression
res1 <- BIFIE.linreg( bdat , dep= "ASMMAT" , pre=c("one","books","migrant") ,
group= "female" )
summary(res1)
#*** Wald test which tests whether sigma and R^2 values are the same
res1$parnames # parameter names
pn <- res1$parnames ; PN <- length(pn)
Cdes <- matrix(0,nrow=2 , ncol=PN)
colnames(Cdes) <- pn
# equality of R^2 ( R^2(female0) - R^2(female1) = 0 )
Cdes[ 1 , c("R^2_NA_female_0" , "R^2_NA_female_1" ) ] <- c(1,-1)
# equality of sigma ( sigma(female0) - sigma(female1) = 0)
Cdes[ 2 , c("sigma_NA_female_0" , "sigma_NA_female_1" ) ] <- c(1,-1)
# design vector
rdes <- rep(0,2)
# perform Wald test
wmod1 <- BIFIE.waldtest( BIFIE.method=res1 , Cdes=Cdes , rdes=rdes )
summary(wmod1)
#******************
#*** Model 2: Correlations
# compute some correlations
res2a <- BIFIE.correl( bdat , vars=c("ASMMAT","ASSSCI","migrant", "books") )
summary(res2a)
# test whether r(MAT,migr)=r(SCI,migr) and r(MAT,books)=r(SCI,books)
pn <- res2a$parnames; PN <- length(pn)
Cdes <- matrix( 0 , nrow=2 , ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1 , c("ASMMAT_migrant" , "ASSSCI_migrant") ] <- c(1,-1)
Cdes[ 2 , c("ASMMAT_books" , "ASSSCI_books") ] <- c(1,-1)
rdes <- rep(0,2)
# perform Wald test
wres2a <- BIFIE.waldtest( res2a , Cdes , rdes )
summary(wres2a)
#******************
#*** Model 3: Frequencies
# Number of books splitted by gender
res3a <- BIFIE.freq( bdat , vars=c("books") , group="female" )
summary(res3a)
# test whether book(cat4,female0)+book(cat5,female0)=book(cat4,female1)+book(cat5,female5)
pn <- res3a$parnames; PN <- length(pn)
Cdes <- matrix( 0 , nrow=1 , ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1 , c("books_4_female_0" , "books_5_female_0" ,
"books_4_female_1" , "books_5_female_1" ) ] <- c(1,1,-1,-1)
rdes <- c(0)
# Wald test
wres3a <- BIFIE.waldtest( res3a , Cdes , rdes )
summary(wres3a)
#******************
#*** Model 4: Means
# math and science score splitted by gender
res4a <- BIFIE.univar( bdat , vars=c("ASMMAT","ASSSCI") , group="female" )
summary(res4a)
# test whether there are significant gender differences in math and science
# => multivariate ANOVA
pn <- res4a$parnames; PN <- length(pn)
Cdes <- matrix( 0 , nrow=2 , ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1 , c("ASMMAT_female_0" , "ASMMAT_female_1" ) ] <- c(1,-1)
Cdes[ 2 , c("ASSSCI_female_0" , "ASSSCI_female_1" ) ] <- c(1,-1)
rdes <- rep(0,2)
# Wald test
wres4a <- BIFIE.waldtest( res4a , Cdes , rdes )
summary(wres4a)
Run the code above in your browser using DataLab