
Last chance! 50% off unlimited learning
Sale ends in
Models in modelFrame
lists are compared with
anova.lme
method.
# S3 method for modelFrame
anova(object, ..., test, type, adjustSigma, Terms,
L, verbose)
data frame inheriting from class "anova.lme".
an object inheriting from class "modelFrame".
other optional fitted model objects inheriting from
classes "modelFrame", "lme", "lm", among other (see
anova.lme
).
optional character string specifying the type of sum of
squares to be used in F-tests for the terms in the model
(see anova.lme
).
optional character string specifying the type of sum
of squares to be used in F-tests for the terms in the
model (see anova.lme
).
If TRUE and the estimation method used to obtain
object was maximum likelihood, the residual
standard error is multiplied by sqrt(nobs/(nobs -
npar)), converting it to a REML-like estimate (see
anova.lme
).
optional integer or character vector specifying which
terms in the model should be jointly tested to be zero
using a Wald F-test (see anova.lme
).
optional numeric vector or array specifying linear
combinations of the coefficients in the model that should be
tested to be zero (see anova.lme
).
optional logical value. If TRUE, the calling
sequences for each fitted model object are printed with
the rest of the output, being omitted if verbose =
FALSE (see anova.lme
).
Wilson Lara <wilarhen@gmail.com>, Felipe Bravo <fbravo@pvs.uva.es>
Lara W., F. Bravo, D. Maguire. 2013. Modeling patterns between drought and tree biomass growth from dendrochronological data: A multilevel approach. Agric. For. Meteorol., 178-179:140-151.
##TRW chronology (mm) and inside-bark radii
data(Pchron,envir = environment())
## Parameters of allometric model to compute Diameter at Breast
## Height over bark (DBH, cm) from diameter inside bark (dib, cm)
## and Total Tree Biomass (TTB, kg tree -1 ) from DBH (Lara
## et. al. 2013):
biom_param <- c(2.87, 0.85, 0.05, 2.5)
## Modeling tree-biomass fluctuations while accounting for
## within-plot source variability (see defaults in "modelFrame"
## function)
# \donttest{
trwf <- modelFrame(Pchron,
to = 'cm',
MoreArgs = list(mp = c(2,1, biom_param)),
log.t = FALSE,
on.time = FALSE)
# }
## Fitting a single linear regression of the "tdForm" formula
## without random effects to the tree-biomass data:
# \donttest{
trwfl <- lm(log(x) ~ log(csx) + year,
data = trwf$'model'$'data')
# }
## Comparing model likelihoods with anova method:
# \donttest{
anova(trwf, trwfl)
# }
Run the code above in your browser using DataLab