Learn R Programming

BMAmevt (version 1.0.5)

Multivariate Extremes: Bayesian Estimation of the Spectral Measure

Description

Toolkit for Bayesian estimation of the dependence structure in multivariate extreme value parametric models, following Sabourin and Naveau (2014) and Sabourin, Naveau and Fougeres (2013) .

Copy Link

Version

Install

install.packages('BMAmevt')

Monthly Downloads

186

Version

1.0.5

License

GPL (>= 2)

Maintainer

Leo Belzile

Last Published

April 21st, 2023

Functions in BMAmevt (1.0.5)

diagnose

Diagnostics for the MCMC output in the PB and NL models.
dnestlog

Pairwise Beta (PB) and Nested Asymmetric Logistic (NL) distributions
dgridplot

Image and/or Contour plots of spectral densities in trivariate extreme value models
dnestlog.grid

PB and NL spectral densities on the two-dimensional simplex
excessProb.nl

Posterior distribution the probability of joint threshold excess, in the NL model.
excessProb.condit.dm

Probability of joint threshold exceedance, in the Dirichlet Mixture model, given a DM parameter.
excessProb.condit.pb

Estimates the probability of joint excess, given a PB parameter.
discretize

Discretization grid builder.
excessProb.condit.nl

Probability of joint threshold excess in the NL model
dm.expar.D3k3

Example of valid Dirichlet mixture parameter for tri-variate extremes.
logit

Logit transformation
marginal.lkl.nl

Marginal likelihoods of the PB and NL models.
excessProb.pb

Estimates the probability of joint excess (Frechet margins)
expfunction.nl

Exponent function in the NL model.
laplace.evt

Laplace approximation of a model marginal likelihood by Laplace approximation.
maxLikelihood

Maximum likelihood optimization
lAccept.ratio

Acceptance probability in the MCMC algorithm.
invlogit

Inverse logit transformation
marginal.lkl

Marginal model likelihood
frechetdat

Multivariate data set with margins following unit Frechet distribution.
posterior.predictive.nl

Posterior predictive densities in the three dimensional PB, NL and NL3 models
posteriorMean

Posterior predictive density on the simplex, for three-dimensional extreme value models.
posterior.predictive3D

Posterior predictive density on the simplex, for three-dimensional extreme value models.
posteriorMCMC.nl

MCMC posterior samplers for the pairwise beta and the negative logistic models.
nl.Hpar

Default hyper-parameters for the NL model.
pb.Hpar

Default hyper-parameters for the Pairwise Beta model.
pb.MCpar

Default MCMC tuning parameter for the Pairwise Beta model.
posteriorDistr.bma

Posterior distribution in the average model
rstable.posit

Positive alpha-stable distribution.
nl.MCpar

Default MCMC tuning parameter for the Nested Asymmetric logistic model.
rect.integrate

Density integration on the two-dimensional simplex
transf.to.equi

Linear coordinate transformations
rdirichlet

Dirichlet distribution: random generator
scores3D

Logarithmic score and \(L^2\) distance between two densities on the simplex (trivariate case).
proposal.pb

PB model: proposal distribution
winterdat

Five-dimensional air quality dataset recorded in Leeds(U.K.), during five winter seasons.
proposal.nl

NL3 model: proposal distribution.
prior.pb

Prior parameter distribution for the Pairwise Beta model
prior.nl

Prior parameter distribution for the NL model
posteriorMCMC

MCMC sampler for parametric spectral measures
posteriorWeights

Posterior model weights
Leeds.frechet

Multivariate data set with margins following unit Frechet distribution.
ddirimix.grid

Plots the Dirichlet mixture density on a discretization grid
MCpriorIntFun

Generic Monte-Carlo integration of a function under the prior distribution
cons.angular.dat

Angular data set generation from unit Frechet data.
ddirimix

Angular density/likelihood function in the Dirichlet Mixture model.
MCpriorIntFun.nl

Generic Monte-Carlo integration under the prior distribution in the PB and NL models.
add.frame

Adds graphical elements to a plot of the two dimensional simplex.
ddirimix.grid1D

Univariate projection or marginalization of a Dirichlet mixture density on on [0,1]
BMAmevt-package

Bayesian Model Averaging for Multivariate Extremes
Leeds

Tri-variate ‘angular’ data set approximately distributed according to a multivariate extremes angular distribution