# NOT RUN {
data("datasim")
tsregime_obj = datasim$Sim
# for estimate non-structural parameters:
# mtarns: l always known,
# Sigma = NULL = list(R1,R2) can be known, r = NULL can be known
# Sigma and r known
parameters = list(l = length(datasim$Reg),
Sigma = list(R1 = datasim$Reg$R1$sigma,R2 = datasim$Reg$R2$sigma),
r = tsregime_obj$r,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars_Sr = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
#only r known
parameters = list(l = length(datasim$Reg),Sigma = NULL, r = tsregime_obj$r,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars_r = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
#r and Sigma unknown
parameters = list(l = length(datasim$Reg),Sigma = NULL, r = NULL,
orders = list(pj = datasim$pj, qj = datasim$qj, dj = datasim$dj))
initpars = mtarinipars(tsregime_obj,list_model = list(pars = parameters))
# for estimate structural and non-structural parameters
# mtarstr: l always known
parameters = list(l = length(datasim$Reg))
orders = list(pj = c(2,2),dj = c(1,1))
initpars_KUO = mtarinipars(tsregime_obj,
list_model = list(pars = parameters,orders = orders),method = 'KUO')
initpars_SSVS = mtarinipars(tsregime_obj,
list_model = list(pars = parameters,orders = orders),method = 'SSVS')
# mtarnumreg l0_min or l0_max and method always
initpars_l = mtarinipars(tsregime_obj,list_model = list(l0_max = 3),method = 'KUO')
# }
Run the code above in your browser using DataLab