# NOT RUN {
### Visualizing the simulated data for clustering ###
require(scatterplot3d)
cluster_color <- c(rgb(1,0,0,alpha = 0.5),
rgb(0,0,1,alpha = 0.5),
rgb(0,0.5,0,alpha = 0.5))
cluster_color <- cluster_color[sim.cluster.data$cluster]
cluster_pch <- c(19,15,17)[sim.cluster.data$cluster]
par(mfrow=c(2,2))
par(mar=c(4,5,2,2))
scatterplot3d::scatterplot3d(x=sim.cluster.data$Z1,y = sim.cluster.data$Z2, z=sim.cluster.data$Z3,
color=cluster_color,pch=cluster_pch,
xlab="Z1",ylab="Z2",zlab="Z3",
main="Simulated data in 3 clusters"
)
par(mar=c(4,5,2,2))
plot(sim.cluster.data[,c("Z2","Z3")],col=cluster_color,pch=cluster_pch,xlab="Z2",ylab="Z3")
par(mar=c(4,5,2,2))
plot(sim.cluster.data[,c("Z1","Z3")],col=cluster_color,pch=cluster_pch,xlab="Z1",ylab="Z3")
par(mar=c(4,5,2,2))
plot(sim.cluster.data[,c("Z1","Z2")],col=cluster_color,pch=cluster_pch,xlab="Z1",ylab="Z2")
### Code to generate the simulated data from scratch ###
require(MASS)
set.seed(0)
n.sim <- 100
n.cluster <- 3
p <- 3
mu_sim.cluster.data.Z <- matrix( c(2,2,5,
6,4,2,
1,6,2) ,
nrow=n.cluster, ncol=p, byrow=TRUE)
sigma_sim.cluster.data.Z <- array(dim=c(3,3,3))
sigma_sim.cluster.data.Z[,,1] <- diag(3)
sigma_sim.cluster.data.Z[,,2] <- matrix( c(0.1,0,0,
0,2,0,
0,0,0.1) ,
nrow=n.cluster, ncol=p, byrow=TRUE)
sigma_sim.cluster.data.Z[,,3] <- matrix( c(2,0,0,
0,0.1,0,
0,0,0.1) ,
nrow=n.cluster, ncol=p, byrow=TRUE)
sim.cluster.data <- data.frame(cluster=sample(x=1:n.cluster,size=n.sim,replace=TRUE))
sim.cluster.data.Z <- matrix(NA,nrow=n.sim,ncol=p)
for(i in unique(sim.cluster.data$cluster)) {
sim.cluster.data.Z[sim.cluster.data[,1]==i,] <- MASS::mvrnorm(
n=sum(sim.cluster.data[,1]==i),
mu=mu_sim.cluster.data.Z[i,],
Sigma=sigma_sim.cluster.data.Z[,,i]
)
}
colnames(sim.cluster.data.Z) <- paste("Z",1:ncol(sim.cluster.data.Z),sep="")
sim.cluster.data <- cbind(sim.cluster.data,sim.cluster.data.Z)
# }
Run the code above in your browser using DataLab