Learn R Programming

BNPdensity (version 2023.3.8)

Ferguson-Klass Type Algorithm for Posterior Normalized Random Measures

Description

Bayesian nonparametric density estimation modeling mixtures by a Ferguson-Klass type algorithm for posterior normalized random measures.

Copy Link

Version

Install

install.packages('BNPdensity')

Monthly Downloads

382

Version

2023.3.8

License

GPL (>= 2)

Maintainer

Guillaume Kon Kam King

Last Published

March 24th, 2023

Functions in BNPdensity (2023.3.8)

MixNRMI1cens

Normalized Random Measures Mixture of Type I for censored data
Mv

Continuous Jump heights function
MixPY2

Pitman-Yor process mixture of Type II
MvInv

Invert jump heights function
MixPY1

Pitman-Yor process mixture of Type I
add

Add x and y
acidity

Acidity Index Dataset
asNumeric_no_warning

If the function Rmpfr::asNumeric returns a warning about inefficiency, silence it.
as.mcmc.multNRMI

Convert the output of multMixNRMI into a coda mcmc object
MixNRMI2

Normalized Random Measures Mixture of Type II
MixNRMI2cens

Normalized Random Measures Mixture of Type II for censored data
compute_thinning_grid

Compute the grid for thinning the MCMC chain
convert_to_mcmc

Convert the output of multMixNRMI into a coda mcmc object
comment_on_NRMI_type

Comment on the NRMI process depending on the value of the parameters
cens_data_check

Censoring data check
dt_

Non-standard student-t density
dhalfcauchy

Density half Cauchy
dkcens2_1val

Density evaluation once
dhalfnorm

Density half normal
fcondYZXA

Conditional posterior distribution of the bivariate latents (Y,Z)
censor_code_rl

Censor code right-left
fcondYXAcens2

Conditional posterior distribution of the latents Y in the censoring case
cpo.NRMI1

Extract the Conditional Predictive Ordinates (CPOs) from a fitted object
cpo.NRMI2

Extract the Conditional Predictive Ordinates (CPOs) from a fitted object
dhalft

Density half Student-t
fcondXA2

Conditional density evaluation in the fully nonparametric model
fcondXA

Conditional density evaluation in the semiparametric model
grid_from_data_censored

Create a plotting grid from censored data.
dk

Kernel density function
comp1

Ties function: univariate
cpo

Conditional predictive ordinate function
dkcens2

Density of the chosen kernel
dtnorm

Density truncated normal
fcondXA2cens2

Conditional density evaluation in the fully nonparametric model for censored data
fcondYXA

Conditional posterior distribution of the latents Y
grid_from_data_noncensored

Create a plotting grid from non-censored data.
gs4

Resampling Ystar function
gs3

Conditional posterior distribution of latent U
compute_optimal_clustering

Compute the optimal clustering from an MCMC sample
comp2

Ties function: bivariate
fcondYZXAcens2

Conditional posterior distribution of the bivariate latents (Y,Z) in the case of censoring
gs4cens2

Resampling Ystar function in the case of censoring
expected_number_of_components_Dirichlet

Computes the expected number of components for a Dirichlet process.
cpo.multNRMI

Extract the Conditional Predictive Ordinates (CPOs) from a list of fitted objects
galaxy

Galaxy Data Set
give_kernel_name

Gives the kernel name from the integer code
dist_name_k_index_converter

Convert distribution names to indices
enzyme

Enzyme Dataset
expected_number_of_components_stable

Computes the expected number of components for a stable process.
grid_from_data

Create a plotting grid from censored or non-censored data.
plot.NRMI2

Plot the density estimate and the 95% credible interval
gs5cens2

Conditional posterior distribution of sigma in the case of censoring
gs5

Conditional posterior distribution of sigma
fill_sigmas

Repeat the common scale parameter of a semiparametric model to match the dimension of the location parameters.
plotCDF_noncensored

Plot the empirical and fitted CDF for non censored data.
multMixNRMI1

Multiple chains of MixNRMI1
plot.NRMI1

Plot the density estimate and the 95% credible interval
pp_plot_noncensored

Plot the percentile-percentile graph for non censored data.
plot.PY1

Plot the density estimate and the 95% credible interval
gs3_adaptive3

Conditional posterior distribution of latent U
phalft

Distribution function half Student-t
print.NRMI1

S3 method for class 'MixNRMI1'
gsHP

Updates the hyper-parameters of py0
logf_u_cond_y

Target logdensity of U given the data
gsYZstarcens2

Jointly resampling Ystar and Zstar function in the case of censoring
logdprop_logu

Contribution of the proposal kernel logdensity to the Metropolis-Hastings ratio
is_censored

Test if the data is censored
gsYZstar

Jointly resampling Ystar and Zstar function
logacceptance_ratio_logu

Metropolis-Hastings ratio for the conditional of logU
gs3_log

Conditional posterior distribution of latent logU
logf_logu_cond_y

Contribution of the target logdensity of logU to the Metropolis-Hastings ratio
print.PY2

S3 method for class 'PY2'
is_semiparametric

Tests if a fit is a semi parametric or nonparametric model.
plotPDF_noncensored

Plot the density and a histogram for non censored data.
qhalft

Quantile function half Student-t
multMixNRMI2cens

Multiple chains of MixNRMI2cens
plotPDF_censored

Plot the density for censored data.
multMixNRMI2

Multiple chains of MixNRMI2
pp_plot_censored

Plot the percentile-percentile graph for non censored data, using the Turnbull estimator the position of the percentiles.
print.PY1

S3 method for class 'PY1'
print.NRMI2

S3 method for class 'MixNRMI2'
pk

Kernel distribution function
multMixNRMI1cens

Multiple chains of MixNRMI1cens
thresholdGG

Choosing the truncation level for the NGG process
print.multNRMI

S3 method for class 'multNRMI'
plotCDF_censored

Plot the Turnbull CDF and fitted CDF for censored data.
plot.multNRMI

Plot the density estimate and the 95% credible interval
plotfit_noncensored

Plot the density estimate and the 95% credible interval for noncensored data
rk

Kernel density sampling function
summary.NRMI2

S3 method for class 'MixNRMI2'
qhalfcauchy

Quantile function half Cauchy
qhalfnorm

Quantile function half Normal
qtnorm

Quantile function truncated normal
qq_plot_censored

Plot the quantile-quantile graph for censored data.
p0

Centering function
phalfcauchy

Distribution function half Cauchy
rfyzstarcens2

Conditional posterior distribution of the distinct vectors (Ystar,Zstar) in the case of censoring
pt_

Distribution function non-standard student-t
process_dist_name

Process the distribution name argument into a distribution index
plot.PY2

Plot the density estimate and the 95% credible interval
phalfnorm

Distribution function half Normal
plot_clustering_and_CDF

Plot the clustering and the Cumulative Distribution Function
qq_plot_noncensored

Plot the quantile-quantile graph for non censored data.
ptnorm

Distribution function truncated normal
rhalfnorm

Random number generator half Normal
qgeneric

Generic function to find quantiles of a distribution
summary.multNRMI

S3 method for class 'multNRMI'
summary.PY2

S3 method for class 'PY2'
rfyzstar

Conditional posterior distribution of the distinct vectors (Ystar,Zstar)
rprop_logu

Proposal distribution for logU
rfystarcens2

Conditional posterior distribution of the distinct Ystar in the case of censoring
plotfit_censored

Plot the density estimate and the 95% credible interval for censored data
plot_prior_number_of_components

This plots the prior distribution on the number of components for the stable process. The Dirichlet process is provided for comparison.
rfystar

Conditional posterior distribution of the distinct Ystar
salinity

Salinity tolerance
qt_

Quantile function non-standard Student-t
rtnorm

Random number generator for a truncated normal distribution
summarytext

Common text for the summary S3 methods
rt_

Random number generator non-standard Student-t
rhalfcauchy

Random number generator half Cauchy
summary.NRMI1

S3 method for class 'MixNRMI1'
rhalft

Random number generator half Student-t
summary.PY1

S3 method for class 'PY1'
traceplot

Draw a traceplot for multiple chains
GOFplots

Plot Goodness of fits graphical checks for censored data
MixNRMI1

Normalized Random Measures Mixture of Type I
GOFplots_censored

Plot Goodness of fits graphical checks for censored data
GOFplots_noncensored

Plot Goodness of fits graphical checks for non censored data
Galaxy1.out

Fit of MixNRMI1 function to the galaxy dataset
Enzyme2.out

Fit of MixNRMI2 function to the enzyme dataset
Galaxy2.out

Fit of MixNRMI2 function to the galaxy dataset
BNPdensity-package

Bayesian nonparametric density estimation
Enzyme1.out

Fit of MixNRMI1 function to the enzyme dataset