C++ function to estimate Pitman-Yor multivariate mixtures via importance conditional sampler - PRODUCT KERNEL
a matrix of observations
matrix of points to evaluate the density
number of iterations
number of burn-in iterations
expectation of location component
vector, scale parameters for the location component
vector, parameters of scale component
vector, parameters of scale component
means of hyperdistribution of m0
variances of hyperdistribution of m0
shape parameters of hyperdistribution of k0
rate parameters of hyperdistribution of k0
shape parameters of hyperdistribution of b0
rate parameters of hyperdistribution of b0
strength parameter
number of approximating values
number of iterations to show current updating
if TRUE, return also the location and scale paramteres lists
if TRUE, return also the estimated density (default TRUE)
second parameter of PY
print the status
if TRUE return only the posterior mean of the density
if TRUE use hyperpriors, default TRUE