if (FALSE) {
bold_data.ids <- bold.public.search(taxonomy = list("Oreochromis"))
# Fetch the data using the ids.
#1. api_key must be obtained from BOLD support before using `bold.fetch()` function.
#2. Use the `bold.apikey()` function to set the apikey in the global env.
bold.apikey('apikey')
bold.data <- bold.fetch(get_by = "processid",
identifiers = bold_data.ids$processid)
#1. Generate a concise summary of the data
test.data.summary.concise <- bold.data.summarize(bold_df=bold.data,
summary_type = "concise_summary")
# Result
test.data.summary.concise$concise_summary
#2. Generate a detailed taxon counts summary
test.data.summary <- bold.data.summarize(bold_df=bold.data,
summary_type = "detailed_taxon_counts")
# Result
test.data.summary$detailed_taxon_counts
#3. Generate data completeness profile
test.data.summary.completeness <- bold.data.summarize(bold_df=bold.data,
summary_type = "data_completeness")
# Results
# Summary
test.data.summary.completeness$completeness_summary
# Plot
test.data.summary.completeness$completeness_plot
#4. Barcode summary (forward primer LCO1490)
# Users need to first load the package `Biostrings`
test.data.summary.barcode <- bold.data.summarize(bold_df=bold.data,
summary_type = "barcode_summary",
primer_f='GGTCAACAAATCATAAAGATATTGG')
# Results
test.data.summary.barcode$barcode_summary
}
Run the code above in your browser using DataLab