# NOT RUN {
require(doParallel) # You can use a different package to set up the parallel backend
require(MASS)
require(elliplot)
# Loading the data for this example
data(mgnk)
model <- BSLModel(fnSim = mgnk_sim, fnSum = mgnk_sum, simArgs = mgnk$sim_options,
theta0 = mgnk$start, thetaNames = expression(a[1],b[1],g[1],k[1],a[2],b[2],g[2],k[2],
a[3],b[3],g[3],k[3],delta[12],delta[13],delta[23]))
# Performing BSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
resultMgnkBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = 'BSL', parallel = TRUE, parallelArgs = list(.packages='MASS',.export='ninenum'),
verbose = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSL)
summary(resultMgnkBSL)
plot(resultMgnkBSL, which = 2, thin = 20)
# Performing uBSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
resultMgnkuBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = 'uBSL', parallel = TRUE, parallelArgs = list(.packages='MASS',.export='ninenum'),
verbose = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkuBSL)
summary(resultMgnkuBSL)
plot(resultMgnkuBSL, which = 2, thin = 20)
# Performing tuning for BSLasso
ssy <- mgnk_sum(mgnk$data)
lambda_all <- list(exp(seq(-2.5,0.5,length.out=20)), exp(seq(-2.5,0.5,length.out=20)),
exp(seq(-4,-0.5,length.out=20)), exp(seq(-5,-2,length.out=20)))
# Opening up the parallel pools using doParallel
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
set.seed(100)
sp_mgnk <- selectPenalty(ssy, n = c(15, 20, 30, 50), lambda_all = lambda_all, theta = mgnk$start,
M = 100, sigma = 1.5, model = model, method = 'BSL', shrinkage = 'glasso', standardise = TRUE,
parallelSim = TRUE, parallelSimArgs = list(.packages = 'MASS', .export = 'ninenum'),
parallelMain = TRUE)
stopCluster(cl)
registerDoSEQ()
sp_mgnk
plot(sp_mgnk)
# Performing BSLasso with a fixed penalty (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
resultMgnkBSLasso <- bsl(mgnk$data, n = 20, M = 80000, model = model, covRandWalk = mgnk$cov,
method = 'BSL', shrinkage = 'glasso', penalty = 0.3, standardise = TRUE, parallel = TRUE,
parallelArgs = list(.packages = 'MASS', .export = 'ninenum'), verbose = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSLasso)
summary(resultMgnkBSLasso)
plot(resultMgnkBSLasso, which = 2, thin = 20)
# Performing semiBSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
resultMgnkSemiBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = 'semiBSL', parallel = TRUE, parallelArgs = list(.packages='MASS',.export='ninenum'),
verbose = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkSemiBSL)
summary(resultMgnkSemiBSL)
plot(resultMgnkSemiBSL, which = 2, thin = 20)
# Plotting the results together for comparison
# plot using the R default plot function
par(mar = c(4, 4, 1, 1), oma = c(0, 1, 2, 0))
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),
which = 1, thin = 20, label = c('bsl', 'bslasso', 'semiBSL'), col = c('red', 'blue', 'green'),
lty = 2:4, lwd = 1)
mtext('Approximate Univariate Posteriors', outer = TRUE, line = 0.75, cex = 1.2)
# plot using the ggplot2 package
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),
which = 2, thin = 20, label=c('bsl','bslasso','semiBSL'),
options.color=list(values=c('red','blue','green')),
options.linetype = list(values = 2:4), options.size = list(values = rep(1, 3)),
options.theme = list(plot.margin = grid::unit(rep(0.03,4),'npc'),
axis.title = ggplot2::element_text(size=12), axis.text = ggplot2::element_text(size = 8),
legend.text = ggplot2::element_text(size = 12)))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab