bsw: Fitting a log-binomial model using the Bekhit-Sch<U+00F6>pe-Wagenpfeil (BSW) algorithm
Description
bsw() fits a log-binomial model using a modified Newton-type algorithm (BSW algorithm) for solving the maximum likelihood estimation problem under linear inequality constraints.
Usage
bsw(formula, data, maxit = 200L)
Arguments
formula
An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data
A data frame containing the variables in the model.
maxit
A positive integer giving the maximum number of iterations.
Value
An object of S4 class "bsw" containing the following slots:
call
An object of class "call".
formula
An object of class "formula".
coefficients
A numeric vector containing the estimated model parameters.
iter
A positive integer indicating the number of iterations.
converged
A logical constant that indicates whether the model has converged.
y
A numerical vector containing the dependent variable of the model.
x
The model matrix.
data
A data frame containing the variables in the model.
References
Wagenpfeil S (1996) Dynamische Modelle zur Ereignisanalyse. Herbert Utz Verlag Wissenschaft, Munich, Germany
Wagenpfeil S (1991) Implementierung eines SQP-Verfahrens mit dem Algorithmus von Ritter und Best. Diplomarbeit, TUM, Munich, Germany
# NOT RUN {set.seed(123)
x <- rnorm(100, 50, 10)
y <- rbinom(100, 1, exp(-4 + x * 0.04))
fit <- bsw(formula = y ~ x, data = data.frame(y = y, x = x))
summary(fit)
# }