# **Example for BG/BB model:
data(donationsSummary)
rf.matrix <- donationsSummary$rf.matrix
# starting-point parameters
bgbb.startingparams <- c(1, 1, 0.5, 3)
# estimated parameters
bgbb.est.params <- bgbb.EstimateParameters(rf.matrix, bgbb.startingparams)
# set up parameter names for a more descriptive result
bgbb.param.names <- c("alpha", "beta", "gamma", "delta")
# plot-log likelihood contours (not run):
# dc.PlotLogLikelihoodContours(bgbb.rf.matrix.LL, bgbb.est.params, rf.matrix = rf.matrix,
# n.divs = 5, num.contour.lines = 8, zoom.percent = 0.3, allow.neg.params = FALSE,
# param.names = bgbb.param.names)
# **Example for Pareto/NBD model:
data(cdnowSummary)
cbs <- cdnowSummary$cbs
# Speed up calculations:
cbs <- pnbd.compress.cbs(cbs)
# parameters estimated using pnbd.EstimateParameters
pnbd.est.params <- cdnowSummary$est.params
# set up parameter names for a more descriptive result
pnbd.param.names <- c("r", "alpha", "s", "beta")
# plot log-likelihood contours (not run):
# dc.PlotLogLikelihoodContours(pnbd.cbs.LL, pnbd.est.params, cal.cbs = cbs, n.divs = 5,
# num.contour.lines = 15, zoom.percent = 0.3,
# allow.neg.params = FALSE, param.names = pnbd.param.names)
# **Example for BG/NBD model:
data(cdnowSummary)
cbs <- cdnowSummary$cbs
# parameters estimated using bgnbd.EstimateParameters
bgnbd.est.params <- cdnowSummary$est.params
# set up parameter names for a more descriptive result
bgnbd.param.names <- c("r", "alpha", "s", "beta")
# plot log-likelihood contours (not run):
# dc.PlotLogLikelihoodContours(bgnbd.cbs.LL, bgnbd.est.params, cal.cbs = cbs, n.divs = 5,
# num.contour.lines = 15, zoom.percent = 0.3,
# allow.neg.params = FALSE, param.names = bgnbd.param.names)
Run the code above in your browser using DataLab