Learn R Programming

BaPreStoPro (version 0.1)

estimate,Regression-method: Estimation for regression model

Description

Bayesian estimation of the parameter of the regression model $y_i = f(\phi, t_i) + \epsilon_i, \epsilon_i\sim N(0,\gamma^2\widetilde{s}(t_i))$.

Usage

"estimate"(model.class, t, data, nMCMC, propSd, adapt = TRUE, proposal = c("normal", "lognormal"))

Arguments

model.class
class of the regression model including all required information, see Regression-class
t
vector of time points
data
vector of observation variables
nMCMC
length of Markov chain
propSd
vector of proposal variances for $\phi$
adapt
if TRUE (default), proposal variance is adapted
proposal
proposal density: "normal" (default) or "lognormal" (for positive parameters)

References

Hermann, S., K. Ickstadt, and C. H. Mueller (2016). Bayesian Prediction of Crack Growth Based on a Hierarchical Diffusion Model. Applied Stochastic Models in Business and Industry, DOI: 10.1002/asmb.2175.

Examples

Run this code
t <- seq(0,1, by = 0.01)
model <- set.to.class("Regression", fun = function(phi, t) phi[1]*t + phi[2],
                   parameter = list(phi = c(1,2), gamma2 = 0.1))
data <- simulate(model, t = t, plot.series = TRUE)
est <- estimate(model, t, data, 1000)
plot(est)

Run the code above in your browser using DataLab