Learn R Programming

BaPreStoPro (version 0.1)

pred.base: Bayesian prediction function

Description

Drawing from predictive distribution based on distribution function Fun(x, x0, samples) or density dens(x, x0, samples). Samples should contain samples from the posterior distribution of the parameters.

Usage

pred.base(samples, Fun, dens, len = 100, x0, method = c("vector", "free"), pred.alg = c("Distribution", "Trajectory"), sampling.alg = c("RejSamp", "InvMethod"), candArea, grid = 0.001)

Arguments

samples
MCMC samples
Fun
cumulative distribution function
dens
density function
len
number of samples to be drawn
x0
vector of starting points
method
vectorial ("vector") or not ("free")
pred.alg
prediction algorithm, "Distribution" or "Trajectory"
sampling.alg
sampling algorithm, rejection sampling ("RejSamp") or inversion method ("InvMethod")
candArea
candidate area
grid
fineness degree

Value

vector of samples from prediction

References

Hermann, S. (2016). Bayesian Prediction for Stochastic Processes based on the Euler Approximation Scheme. SFB 823 discussion paper 27/16.