Learn R Programming

BaPreStoPro (version 0.1)

predict,est.jumpRegression-method: Prediction for a regression model dependent on a Poisson process

Description

Bayesian prediction of a regression model $y_i = f(t_i, N_{t_i}, \theta) + \epsilon_i$ with $N_t\sim Pois(\Lambda(t, \xi)), \epsilon_i\sim N(0,\gamma^2\widetilde{s}(t))$.

Usage

"predict"(object, t, only.interval = TRUE, level = 0.05, burnIn, thinning, Lambda.mat, fun.mat, which.series = c("new", "current"), M2pred = 10, cand.length = 1000, pred.alg = c("Distribution", "simpleTrajectory", "simpleBayesTrajectory"), sample.length, grid = 1e-05, plot.prediction = TRUE)

Arguments

object
class object of MCMC samples: "est.jumpRegression", created with method estimate,jumpRegression-method
t
vector of time points to make predictions for
only.interval
if TRUE: only calculation of prediction intervals
level
level of the prediction intervals
burnIn
burn-in period
thinning
thinning rate
Lambda.mat
matrix-wise definition of intensity rate function (makes it faster)
fun.mat
matrix-wise definition of regression function (makes it faster)
which.series
which series to be predicted, new one ("new") or further development of current one ("current")
M2pred
optional, if current series to be predicted and t missing, M2pred variables will be predicted with the observation time distances
cand.length
length of candidate samples (if method = "vector"), for jump diffusion
pred.alg
prediction algorithm, "Distribution", "Trajectory", "simpleTrajectory" or "simpleTrajectory"
sample.length
number of samples to be drawn, default is the number of posterior samples
grid
fineness degree of sampling approximation
plot.prediction
if TRUE, prediction intervals are plotted

References

Hermann, S. (2016a). BaPreStoPro: an R Package for Bayesian Prediction of Stochastic Processes. SFB 823 discussion paper 28/16.

Hermann, S. (2016b). Bayesian Prediction for Stochastic Processes based on the Euler Approximation Scheme. SFB 823 discussion paper 27/16.

Examples

Run this code
t <- seq(0,1, by = 0.01)
cl <- set.to.class("jumpRegression", fun = function(t, N, theta) theta[1]*t + theta[2]*N,
             parameter = list(theta = c(1,2), gamma2 = 0.1, xi = c(3, 1/4)),
             Lambda = function(t, xi) (t/xi[2])^xi[1])
data <- simulate(cl, t = t)
est <- estimate(cl, t, data, 1000)
plot(est)
## Not run: 
# pred <- predict(est, Lambda.mat = function(t, xi) (t/xi[,2])^xi[,1],
#                  fun.mat = function(t, N, theta) theta[,1]*t + theta[,2]*N)
# ## End(Not run)
pred <- predict(est, pred.alg = "simpleTrajectory", sample.length = 100)

Run the code above in your browser using DataLab