Learn R Programming

BaPreStoPro (version 0.1)

simulate,jumpRegression-method: Simulation of regression model dependent on Poisson process

Description

Simulation of of the regression model $y_i = f(t_i, N_{t_i}, \theta) + \epsilon_i$ with $N_t\sim Pois(\Lambda(t, \xi)), \epsilon_i\sim N(0,\gamma^2\widetilde{s}(t))$.

Usage

"simulate"(object, nsim = 1, seed = NULL, t, plot.series = TRUE)

Arguments

object
class object of parameters: "jumpRegression"
nsim
number of trajectories to simulate. Default is 1.
seed
optional: seed number for random number generator
t
vector of time points
plot.series
logical(1), if TRUE, simulated series are depicted grafically

Examples

Run this code
model <- set.to.class("jumpRegression", fun = function(t, N, theta) theta[1]*t + theta[2]*N,
   parameter = list(theta = c(1,2), gamma2 = 0.1, xi = 10))
t <- seq(0, 1, by = 0.01)
data <- simulate(model, t = t)

Run the code above in your browser using DataLab