# NOT RUN {
data.params <- get_data_params(c('decomp=Tucker'))
toy <- mk_toy(data.params)
# Make training data object excluding the first two samples for modes 1 & 2.
train.data <- input_data$new(mode1.X=toy$mode1.X[-(1:2),-1],
mode2.X=toy$mode2.X[-(1:2),-1],
mode3.X=toy$mode3.X[,-1],
resp=toy$resp)
# Remove some responses for warm prediction
warm.ind <- sample(1:prod(dim(train.data$resp)), 20)
warm.resp <- train.data$resp[warm.ind]
train.data$resp[warm.ind] <- NA
# Make testing objects
m1.test.data <- input_data$new(mode1.X=toy$mode1.X[1:2,-1],
mode2.X=toy$mode2.X[-(1:2),-1],
mode3.X=toy$mode3.X[,-1],
resp=toy$resp[1:2,-(1:2),])
m2.test.data <- input_data$new(mode1.X=toy$mode1.X[-(1:2),-1],
mode2.X=toy$mode2.X[1:2,-1],
mode3.X=toy$mode3.X[,-1],
resp=toy$resp[-(1:2),1:2,])
m1m2.test.data <- input_data$new(mode1.X=toy$mode1.X[1:2,-1],
mode2.X=toy$mode2.X[1:2,-1],
mode3.X=toy$mode3.X[,-1],
resp=toy$resp[1:2,1:2,])
model.params <- get_model_params(c('decomp=Tucker'))
toy.model <- mk_model(train.data, model.params)
toy.model$rand_init(model.params)
toy.model$iter <- 1
test.results <- numeric(0)
test_results(m=toy.model, d=train.data, warm.resp=warm.resp,
test.m1=m1.test.data, test.m2=m2.test.data,
test.m1m2=m1m2.test.data)
# }
Run the code above in your browser using DataLab