
Last chance! 50% off unlimited learning
Sale ends in
Use filter to subset the TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.
# S3 method for TidySet
filter(.data, ...)filter_set(.data, ...)
filter_element(.data, ...)
filter_relation(.data, ...)
A TidySet object.
The TidySet object.
The logical predicates in terms of the variables of the sets.
dplyr::filter()
and activate()
Other methods:
TidySet-class
,
activate()
,
add_column()
,
add_relation()
,
arrange.TidySet()
,
cartesian()
,
complement()
,
complement_element()
,
complement_set()
,
element_size()
,
elements()
,
group()
,
group_by.TidySet()
,
incidence()
,
intersection()
,
is.fuzzy()
,
is_nested()
,
move_to()
,
mutate.TidySet()
,
nElements()
,
nRelations()
,
nSets()
,
name_elements<-()
,
name_sets()
,
name_sets<-()
,
power_set()
,
pull.TidySet()
,
relations()
,
remove_column()
,
remove_element()
,
remove_relation()
,
remove_set()
,
rename_elements()
,
rename_set()
,
select.TidySet()
,
set_size()
,
sets()
,
subtract()
,
union()
relations <- data.frame(
sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
elements = rep(letters[seq_len(6)], 2),
fuzzy = runif(12),
type = c(rep("Gene", 4), rep("lncRNA", 2))
)
TS <- tidySet(relations)
TS <- move_to(TS, from = "relations", to = "elements", column = "type")
filter(TS, elements == "a")
# Equivalent to filter_relation
filter(TS, elements == "a", sets == "a")
filter_relation(TS, elements == "a", sets == "a")
# Filter element
filter_element(TS, type == "Gene")
# Filter sets and by property of elements simultaneously
filter(TS, sets == "b", type == "lncRNA")
# Filter sets
filter_set(TS, sets == "b")
Run the code above in your browser using DataLab