Learn R Programming

BatchQC (version 1.0.17)

batchqc_pc_explained_variation: Returns explained variation for each principal components

Description

Returns explained variation for each principal components

Usage

batchqc_pc_explained_variation(pcs, vars, condition, batch)

Arguments

pcs
Principal components in the given data
vars
Variance of the Principal components in the given data
condition
Condition covariate of interest
batch
Batch covariate

Value

Explained variation table for each principal components

Examples

Run this code
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
    npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800, 
    basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
pca <- batchqc_pca(data.matrix, batch, mod=modmatrix)
pcs <- t(data.frame(pca$x))
batchqc_pc_explained_variation(pcs, pca$sdev^2, condition, batch)

Run the code above in your browser using DataLab