Learn R Programming

BatchQC (version 1.0.17)

batchqc_pca_svd: Performs PCA svd variance decomposition and produces plot of the first two principal components

Description

Performs PCA svd variance decomposition and produces plot of the first two principal components

Usage

batchqc_pca_svd(data.matrix, batch, mod = NULL)

Arguments

data.matrix
Given data or simulated data from rnaseq_sim()
batch
Batch covariate
mod
Model matrix for outcome of interest and other covariates besides batch

Value

res PCA list with two components v and d.

Examples

Run this code
nbatch <- 3
ncond <- 2
npercond <- 10
data.matrix <- rnaseq_sim(ngenes=50, nbatch=nbatch, ncond=ncond, npercond=
    npercond, basemean=10000, ggstep=50, bbstep=2000, ccstep=800, 
    basedisp=100, bdispstep=-10, swvar=1000, seed=1234)
batch <- rep(1:nbatch, each=ncond*npercond)
condition <- rep(rep(1:ncond, each=npercond), nbatch)
pdata <- data.frame(batch, condition)
modmatrix = model.matrix(~as.factor(condition), data=pdata)
batchqc_pca_svd(data.matrix, batch, mod=modmatrix)

Run the code above in your browser using DataLab