Learn R Programming

BayesBrainMap (version 0.1.3)

UpdateTheta_BrainMap: Parameter Estimates in EM Algorithm for Bayesian brain map

Description

Parameter Estimates in EM Algorithm for Bayesian brain map

Usage

UpdateTheta_BrainMap.spatial(
  prior_mean,
  prior_var,
  meshes,
  BOLD,
  theta,
  C_diag,
  H,
  Hinv,
  s0_vec,
  D,
  Dinv_s0,
  verbose = FALSE,
  return_MAP = FALSE,
  update = c("all", "kappa", "A")
)

UpdateTheta_BrainMap.independent( prior_mean, prior_var, BOLD, theta, C_diag, H, Hinv, update_nu0sq = TRUE, return_MAP = FALSE, verbose = TRUE )

Value

An updated list of parameter estimates, theta, OR if return_MAP=TRUE, the posterior mean and precision of the latent fields

Arguments

prior_mean

(\(V \times Q\) matrix) mean maps for each network in prior

prior_var

(\(V \times Q\) matrix) between-subject variance maps for each network in prior

meshes

NULL for spatial independence model, otherwise a list of objects of class "BrainMap_mesh" containing the triangular mesh (see make_mesh) for each brain structure.

BOLD

(\(V \times Q\) matrix) dimension-reduced fMRI data

theta

(list) current parameter estimates

C_diag

\((Qx1)\) diagonal elements of residual covariance after dimension reduction

H, Hinv

For dimension reduction

s0_vec

Vectorized prior means

D

Sparse diagonal matrix of prior standard deviations

Dinv_s0

The inverse of D times s0_vec

verbose

If TRUE, display progress of algorithm. Default: FALSE.

return_MAP

If TRUE. return the posterior mean and precision of the latent fields instead of the parameter estimates. Default: FALSE.

update

Which parameters to update. Either "all", "A" or "kappa".

update_nu0sq

For non-spatial model: updating nu0sq is recommended if dimension reduction was not performed, and is not recommended if it was.