Parameter Estimates in EM Algorithm for Bayesian brain map
UpdateTheta_BrainMap.spatial(
prior_mean,
prior_var,
meshes,
BOLD,
theta,
C_diag,
H,
Hinv,
s0_vec,
D,
Dinv_s0,
verbose = FALSE,
return_MAP = FALSE,
update = c("all", "kappa", "A")
)UpdateTheta_BrainMap.independent(
prior_mean,
prior_var,
BOLD,
theta,
C_diag,
H,
Hinv,
update_nu0sq = TRUE,
return_MAP = FALSE,
verbose = TRUE
)
An updated list of parameter estimates, theta, OR if
return_MAP=TRUE
, the posterior mean and precision of the latent fields
(\(V \times Q\) matrix) mean maps for each network in prior
(\(V \times Q\) matrix) between-subject variance maps for each network in prior
NULL
for spatial independence model, otherwise a list of
objects of class "BrainMap_mesh" containing the triangular mesh (see
make_mesh
) for each brain structure.
(\(V \times Q\) matrix) dimension-reduced fMRI data
(list) current parameter estimates
\((Qx1)\) diagonal elements of residual covariance after dimension reduction
For dimension reduction
Vectorized prior means
Sparse diagonal matrix of prior standard deviations
The inverse of D times s0_vec
If TRUE
, display progress of algorithm. Default: FALSE
.
If TRUE
. return the posterior mean and precision of
the latent fields instead of the parameter estimates. Default: FALSE
.
Which parameters to update. Either "all"
, "A"
or "kappa"
.
For non-spatial model: updating nu0sq
is recommended
if dimension reduction was not performed, and is not recommended if it was.