VB Algorithm for FC Bayesian brain map
VB_FCBrainMap(
prior_mean,
prior_var,
prior_FC,
method_FC = c("VB1", "VB2"),
nsamp_u = 10000,
CI_FC = 0.95,
return_FC_samp = FALSE,
prior_params = c(0.001, 0.001),
BOLD,
TR = NULL,
A0,
S0,
S0_var,
maxiter = 100,
miniter = 3,
epsilon = 0.001,
usePar = FALSE,
PW = FALSE,
seed = 1234,
verbose = FALSE
)
A list of computed values, including the final parameter estimates.
(\(V \times Q\) matrix) mean maps for each network in the prior, where \(Q\) is the number of networks, and \(V=nvox\) is the number of data locations.
(\(V \times Q\) matrix) between-subject variance maps for each network in the prior.
(list) Parameters of functional connectivity prior.
Variational Bayes (VB) method for FC Bayesian brain mapping:
"VB1"
(default) uses a conjugate Inverse-Wishart prior for the cor(A);
"VB2"
draws samples from p(cor(A)) to emulate the population distribution
using a combination of Cholesky, SVD, and random pivoting.
For VB1, the number of samples to generate from u ~ Gamma, where
A is Gaussian conditional on u. Default: 10000
.
Level of posterior credible interval to construct for each FC element.
Default: 0.95
.
Should the FC samples (\(QxQxK\)) be returned, where K is the number of posterior samples generated? May be a large object. For VB1, K is equal to nsamp_u. For VB2, K is equal to the number of samples from p(G) contained in prior_FC.
Alpha and beta parameters of IG prior on \(\tau^2\)
(error variance). Default: 0.001
for both.
(\(V \times T\) matrix) preprocessed fMRI data.
Initial guesses at latent variables: A
(\(TxQ\)
mixing matrix), S
(\(QxV\) matrix of spatial networks), and
variance matrix S0_var
.
Maximum number of VB iterations. Default: 100
.
Minimum number of VB iterations. Default: 3
.
Smallest proportion change in parameter estimates between iterations.
Default: 0.001
.
Parallelize the computation? Default: FALSE
. Can be the
number of cores to use or TRUE
, which will use the number available minus two.
Prewhiten to account for residual autocorrelation? Default: FALSE
.
(Only applicable if PW
) Seed to use for computing temporal
effective sample size (ESS) to correct sums over \(t\). If NULL
,
do not change the seed. Default: 1234
.
If TRUE
, display progress of algorithm. Default: FALSE
.