## Univariate time series
data_vec <- as.numeric(c(rnorm(50,0,0.1), rnorm(50,1,0.25)))
out <- detect_cp(data = data_vec, n_iterations = 2500, n_burnin = 500,
params = list(a = 1, b = 1, c = 0.1), kernel = "ts")
print(out)
## Multivariate time series
data_mat <- matrix(NA, nrow = 3, ncol = 100)
data_mat[1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_mat[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225)))
data_mat[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
out <- detect_cp(data = data_mat, n_iterations = 2500, n_burnin = 500,
params = list(m_0 = rep(0,3), k_0 = 0.25, nu_0 = 4,
S_0 = diag(1,3,3)), kernel = "ts")
print(out)
# \donttest{
## Epidemic diffusions
data_mat <- matrix(NA, nrow = 100, ncol = 1)
betas <- c(rep(0.45, 25),rep(0.14,75))
inf_times <- sim_epi_data(10000, 10, 100, betas, 1/8)
inf_times_vec <- rep(0,100)
names(inf_times_vec) <- as.character(1:100)
for(j in 1:100){
if(as.character(j) %in% names(table(floor(inf_times)))){
inf_times_vec[j] = table(floor(inf_times))[which(names(table(floor(inf_times))) == j)]
}
}
data_mat[,1] <- inf_times_vec
out <- detect_cp(data = data_mat, n_iterations = 500, n_burnin = 100,
params = list(M = 250, xi = 1/8, a0 = 40, b0 = 10), kernel = "epi")
print(out)
# }
Run the code above in your browser using DataLab