Lambda MH step, proposal from conditional conjugate posterior
.lambda_MH_cp(
df_hist,
df_curr,
Y,
I,
X,
s,
beta,
beta_0 = NULL,
mu,
sigma2,
lambda,
lambda_0,
tau,
bp,
bp_0 = 0,
J,
a_lam = 0.01,
b_lam = 0.01,
lambda_move = 0,
lambda_count = 0,
alpha = 0.3
)list of updated (if accepted) lambda and data.frames, as well as the number of accepted moves
data.frame from dataframe_fun()
data.frame from dataframe_fun()
data
censoring indicator
design matrix
split point locations, J + 2
parameter value for covariates
parameter value for historical covariates
prior mean for baseline hazard
prior variance hyperparameter for baseline hazard
baseline hazard
historical baseline hazard
borrowing parameter
number of covariates, length(beta)
number of covariates, length(beta_0)
number of split points
lambda hyperparameter
lambda hyperparameter
number of accepted lambda moves
total number of lambda moves
power parameter