powered by
A function that determines the posterior expectations \(E(\theta_0 | y_0)\) and posterior modes for a set of observed data.
DS.posterior.reduce(DS.GF.obj, exposure)
Object resulting from running DS.prior function on a data set.
In the case of the Poisson family with exposure, represents the exposure values for the count data.
Returns \(k \times 4\) matrix with the columns indicating PEB mean, DS mean, PEB mode, and DS modes for \(k\) observations in the data set.
Mukhopadhyay, S. and Fletcher, D., 2018. "Bayesian Modeling via Goodness-of-Fit," Technical report, https://arxiv.org/abs/1802.00474 .
# NOT RUN { data(rat) rat.start <- gMLE.bb(rat$y, rat$n)$estimate rat.ds <- DS.prior(rat, max.m = 4, rat.start, family = "Binomial") DS.posterior.reduce(rat.ds) # }
Run the code above in your browser using DataLab