# The example datasets potato_visual and potato_weighing contain complete
# rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
# model:
model_fit <- compute_mallows(potato_visual)
# Se the documentation to compute_mallows for how to assess the convergence of the algorithm
# Having chosen burin = 1000, we compute posterior intervals
model_fit$burnin <- 1000
# We then compute the CP consensus.
compute_consensus(model_fit, type = "CP")
# And we compute the MAP consensus
compute_consensus(model_fit, type = "MAP")
if (FALSE) {
# CLUSTERWISE CONSENSUS
# We can run a mixture of Mallows models, using the n_clusters argument
# We use the sushi example data. See the documentation of compute_mallows for a more elaborate
# example
model_fit <- compute_mallows(sushi_rankings, n_clusters = 5)
# Keeping the burnin at 1000, we can compute the consensus ranking per cluster
model_fit$burnin <- 1000
cp_consensus_df <- compute_consensus(model_fit, type = "CP")
# We can now make a table which shows the ranking in each cluster:
cp_consensus_df$cumprob <- NULL
stats::reshape(cp_consensus_df, direction = "wide", idvar = "ranking",
timevar = "cluster",
varying = list(sort(unique(cp_consensus_df$cluster))))
}
if (FALSE) {
# MAP CONSENSUS FOR PAIRWISE PREFENCE DATA
# We use the example dataset with beach preferences.
model_fit <- compute_mallows(preferences = beach_preferences)
# We set burnin = 1000
model_fit$burnin <- 1000
# We now compute the MAP consensus
map_consensus_df <- compute_consensus(model_fit, type = "MAP")
}
if (FALSE) {
# CP CONSENSUS FOR AUGMENTED RANKINGS
# We use the example dataset with beach preferences.
model_fit <- compute_mallows(preferences = beach_preferences, save_aug = TRUE,
aug_thinning = 2, seed = 123L)
# We set burnin = 1000
model_fit$burnin <- 1000
# We now compute the CP consensus of augmented ranks for assessors 1 and 3
cp_consensus_df <- compute_consensus(model_fit, type = "CP",
parameter = "Rtilde", assessors = c(1L, 3L))
# We can also compute the MAP consensus for assessor 2
map_consensus_df <- compute_consensus(model_fit, type = "MAP",
parameter = "Rtilde", assessors = 2L)
# Caution!
# With very sparse data or with too few iterations, there may be ties in the MAP consensus
# This is illustrated below for the case of only 5 post-burnin iterations. Two MAP rankings are
# equally likely in this case (and for this seed).
model_fit <- compute_mallows(preferences = beach_preferences, nmc = 1005,
save_aug = TRUE, aug_thinning = 1, seed = 123L)
model_fit$burnin <- 1000
compute_consensus(model_fit, type = "MAP", parameter = "Rtilde", assessors = 2L)
}
Run the code above in your browser using DataLab