Compute posterior intervals
# S3 method for BayesMallows
compute_posterior_intervals(
model_fit,
burnin = model_fit$burnin,
parameter = "alpha",
level = 0.95,
decimals = 3L,
...
)An object of class BayesMallows returned from
compute_mallows.
A numeric value specifying the number of iterations to discard
as burn-in. Defaults to model_fit$burnin, and must be provided if
model_fit$burnin does not exist. See
assess_convergence.
Character string defining which parameter to compute
posterior intervals for. One of "alpha", "rho", or
"cluster_probs". Default is "alpha".
Decimal number in \([0,1]\) specifying the confidence level.
Defaults to 0.95.
Integer specifying the number of decimals to include in
posterior intervals and the mean and median. Defaults to 3.
Other arguments. Currently not used.
assess_convergence
Other posterior quantities:
assign_cluster(),
compute_consensus.BayesMallows(),
compute_consensus.SMCMallows(),
compute_consensus(),
compute_posterior_intervals.SMCMallows(),
compute_posterior_intervals(),
heat_plot(),
plot.BayesMallows(),
plot.SMCMallows(),
plot_elbow(),
plot_top_k(),
predict_top_k(),
print.BayesMallowsMixtures(),
print.BayesMallows()