Compute posterior intervals
# S3 method for BayesMallows
compute_posterior_intervals(
model_fit,
burnin = model_fit$burnin,
parameter = "alpha",
level = 0.95,
decimals = 3L,
...
)
An object of class BayesMallows
returned from
compute_mallows
.
A numeric value specifying the number of iterations to discard
as burn-in. Defaults to model_fit$burnin
, and must be provided if
model_fit$burnin
does not exist. See
assess_convergence
.
Character string defining which parameter to compute
posterior intervals for. One of "alpha"
, "rho"
, or
"cluster_probs"
. Default is "alpha"
.
Decimal number in \([0,1]\) specifying the confidence level.
Defaults to 0.95
.
Integer specifying the number of decimals to include in
posterior intervals and the mean and median. Defaults to 3
.
Other arguments. Currently not used.
assess_convergence
Other posterior quantities:
assign_cluster()
,
compute_consensus.BayesMallows()
,
compute_consensus.SMCMallows()
,
compute_consensus()
,
compute_posterior_intervals.SMCMallows()
,
compute_posterior_intervals()
,
heat_plot()
,
plot.BayesMallows()
,
plot.SMCMallows()
,
plot_elbow()
,
plot_top_k()
,
predict_top_k()
,
print.BayesMallowsMixtures()
,
print.BayesMallows()