set.seed(994)
n_items <- dim(sushi_rankings)[2]
metric <- "footrule"
# Estimate the logarithm of the partition function of the Mallows rank model
logz_estimate <- estimate_partition_function(
method = "importance_sampling",
alpha_vector = seq(from = 0, to = 15, by = 0.5), n_items = n_items,
metric = metric, nmc = 1e2, degree = 10
)
# Perform the resample-move SMC algorithm
smc_test <- smc_mallows_new_users(
R_obs = sushi_rankings[1:100, ], type = "complete", n_items = n_items,
metric = metric, leap_size = floor(n_items / 5), N = 100, Time = 10,
logz_estimate = logz_estimate, mcmc_kernel_app = 5, num_new_obs = 5,
alpha_prop_sd = 0.5, lambda = 0.15, alpha_max = 1e3
)
# Plot rho
plot(smc_test, colnames = colnames(sushi_rankings), parameter = "rho")
# Plot alpha
plot(smc_test, parameter = "alpha")
Run the code above in your browser using DataLab