- R_obs
Matrix containing the full set of observed rankings of size
n_assessors by n_items
- type
One of "complete"
, "partial"
, or
"partial_alpha_fixed"
.
- n_items
Integer is the number of items in a ranking
- N
Integer specifying the number of particles
- Time
Integer specifying the number of time steps in the SMC algorithm
- mcmc_kernel_app
Integer value for the number of applications we
apply the MCMC move kernel
- num_new_obs
Integer value for the number of new observations
(complete rankings) for each time step
- alpha_prop_sd
Numeric value specifying the standard deviation of the
lognormal proposal distribution used for \(\alpha\) in the
Metropolis-Hastings algorithm. Defaults to 0.1
.
- lambda
Strictly positive numeric value specifying the rate parameter
of the truncated exponential prior distribution of \(\alpha\). Defaults
to 0.1
. When n_cluster > 1
, each mixture component
\(\alpha_{c}\) has the same prior distribution.
- alpha_max
Maximum value of alpha
in the truncated exponential
prior distribution.
- alpha
A numeric value of the scale parameter which is known and fixed.
- aug_method
A character string specifying the approach for filling
in the missing data, options are "pseudolikelihood" or "random".
- logz_estimate
Estimate of the partition function, computed with
estimate_partition_function
.
- cardinalities
Cardinalities for exact evaluation of partition function,
returned from prepare_partition_function
.
- verbose
Logical specifying whether to print out the progress of the
SMC-Mallows algorithm. Defaults to FALSE
.
- metric
A character string specifying the distance metric to use
in the Bayesian Mallows Model. Available options are "footrule"
,
"spearman"
, "cayley"
, "hamming"
, "kendall"
, and
"ulam"
.
- leap_size
leap_size Integer specifying the step size of the
leap-and-shift proposal distribution