Set values related to the prior distributions for the Bayesian Mallows model.
set_priors(gamma = 1, lambda = 0.001, psi = 10, kappa = c(1, 3))
An object of class "BayesMallowsPriors"
, to be provided in the
priors
argument to compute_mallows()
, compute_mallows_mixtures()
, or
update_mallows()
.
Strictly positive numeric value specifying the shape parameter
of the gamma prior distribution of \(\alpha\). Defaults to 1
, thus
recovering the exponential prior distribution used by
vitelli2018BayesMallows.
Strictly positive numeric value specifying the rate parameter
of the gamma prior distribution of \(\alpha\). Defaults
to 0.001
. When n_cluster > 1
, each mixture component \(\alpha_{c}\)
has the same prior distribution.
Positive integer specifying the concentration parameter \(\psi\)
of the Dirichlet prior distribution used for the cluster probabilities
\(\tau_{1}, \tau_{2}, \dots, \tau_{C}\), where \(C\) is the value of
n_clusters
. Defaults to 10L
. When n_clusters = 1
, this argument is
not used.
Hyperparameters of the truncated Beta prior used for error
probability \(\theta\) in the Bernoulli error model. The prior has the
form \(\pi(\theta) = \theta^{\kappa_{1}} (1 - \theta)^{\kappa_{2}}\).
Defaults to c(1, 3)
, which means that the \(\theta\) is a priori
expected to be closer to zero than to 0.5. See
crispino2019BayesMallows for details.
Other preprocessing:
get_transitive_closure()
,
set_compute_options()
,
set_initial_values()
,
set_model_options()
,
set_progress_report()
,
set_smc_options()
,
setup_rank_data()