This function summary the marginal distributions of continuous variables by outputing the mean, standard deviation, and number of subpopulations
SummaryMarginals(marginals)
the marginal distributions obtained from Marginals
function
a data.frame
object containing information about the marginal distributions for continuous variables.
The marginal distributions of continous variables in a CG-BN model are mixtures of Gaussian distributions.
Therefore, besides the mean and standard deviation, the object has an additional column to specify the number of Gaussian
mixtures.
mean
the mean value of a Gaussian distribution.
sd
the standard deviation of a Gaussian distribution.
n
the number of Gaussian distributions in the mixture.
Cowell, R. G. (2005). Local propagation in conditional Gaussian Bayesian networks. Journal of Machine Learning Research, 6(Sep), 1517-1550.
Yu H, Moharil J, Blair RH (2020). BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian Networks. Journal of Statistical Software, 94(3), 1-31. <doi:10.18637/jss.v094.i03>.
# NOT RUN {
data(liver)
tree.init.p <- Initializer(dag=liver$dag, data=liver$data,
node.class=liver$node.class,
propagate = TRUE)
marg <- Marginals(tree.init.p, c("HDL", "Ppap2a", "Neu1"))
SummaryMarginals(marginals=marg)
# }
Run the code above in your browser using DataLab