.old_wd <- setwd(tempdir())
# \donttest{
if (interactive()) {
## simulating data
set.seed(123456)
b0 <- 0.2 # true value for the intercept
b1 <- 0.5 # true value for first beta
b2 <- 0.7 # true value for second beta
n <- 500 # sample size
X1 <- runif(n, -1, 1)
X2 <- runif(n, -1, 1)
Z <- b0 + b1 * X1 + b2 * X2
## linear model data
Y_linear <- rnorm(n, Z, 1)
df <- data.frame(cbind(X1, X2, Y = Y_linear))
## formatting the data for jags
datjags <- as.list(df)
datjags$N <- length(datjags$Y)
## creating jags model
model <- function() {
for(i in 1:N){
Y[i] ~ dnorm(mu[i], sigma) ## Bernoulli distribution of y_i
mu[i] <- b[1] +
b[2] * X1[i] +
b[3] * X2[i] +
b[4] * X1[i] * X2[i]
}
for(j in 1:4){
b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
}
sigma ~ dexp(1)
}
params <- c("b")
inits1 <- list("b" = rep(0, 4))
inits2 <- list("b" = rep(0, 4))
inits <- list(inits1, inits2)
## fitting the model with R2jags
set.seed(123)
fit <- R2jags::jags(data = datjags, inits = inits,
parameters.to.save = params, n.chains = 2, n.iter = 2000,
n.burnin = 1000, model.file = model)
mcmcMargEff(mod = fit,
main = 'b[2]',
int = 'b[4]',
moderator = sim_data_interactive$X2,
plot = TRUE)
}
# }
setwd(.old_wd)
Run the code above in your browser using DataLab