Last chance! 50% off unlimited learning
Sale ends in
Marginal effects plots for MCMC output using ggplot2
mcmcMargEff(
mod,
main,
int,
moderator,
pointest = "mean",
seq = 100,
ci = 0.95,
hpdi = FALSE,
plot = TRUE,
xlab = "Moderator",
ylab = "Marginal Effect"
)
Bayesian model object generated by R2jags, rjags, R2WinBUGS, R2OpenBUGS, MCMCpack, rstan, rstanarm, and brms.
a character with the name of the parameter of interest in the interaction term.
a character with the name of the moderating parameter in the interaction term.
a vector of values that the moderating parameter takes on in the data.
a character indicating whether to use the mean or median for point estimates in the plot.
a numeric giving the number of moderator values used to generate the marginal effects plot.
a scalar indicating the confidence level of the uncertainty intervals.
a logical indicating whether to use highest posterior density intervals or equal tailed credible intervals to capture uncertainty.
logical indicating whether to return a ggplot
object or the
underlying tidy DataFrame. By default, mcmcMargEff
returns a line and
ribbon plot for continuous variables, and a dot and line plot for factor
variables and discrete variables with fewer than 25 unique values.
character giving x axis label if plot = TRUE
, default "Moderator"
character giving y axis label if plot = TRUE
, default "Marginal Effect"
a ggplot
object or a tidy DataFrame.
# NOT RUN {
if (interactive()) {
## simulating data
set.seed(123456)
b0 <- 0.2 # true value for the intercept
b1 <- 0.5 # true value for first beta
b2 <- 0.7 # true value for second beta
n <- 500 # sample size
X1 <- runif(n, -1, 1)
X2 <- runif(n, -1, 1)
Z <- b0 + b1 * X1 + b2 * X2
## linear model data
Y_linear <- rnorm(n, Z, 1)
df <- data.frame(cbind(X1, X2, Y = Y_linear))
## formatting the data for jags
datjags <- as.list(df)
datjags$N <- length(datjags$Y)
## creating jags model
model <- function() {
for(i in 1:N){
Y[i] ~ dnorm(mu[i], sigma) ## Bernoulli distribution of y_i
mu[i] <- b[1] +
b[2] * X1[i] +
b[3] * X2[i] +
b[4] * X1[i] * X2[i]
}
for(j in 1:4){
b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
}
sigma ~ dexp(1)
}
params <- c("b")
inits1 <- list("b" = rep(0, 4))
inits2 <- list("b" = rep(0, 4))
inits <- list(inits1, inits2)
## fitting the model with R2jags
set.seed(123)
fit <- R2jags::jags(data = datjags, inits = inits,
parameters.to.save = params, n.chains = 2, n.iter = 2000,
n.burnin = 1000, model.file = model)
mcmcMargEff(mod = fit,
main = 'b[2]',
int = 'b[4]',
moderator = sim_data_interactive$X2,
plot = TRUE)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab