powered by
Computes the Bayes factor (BF10) for an F-test, comparing a full model to a reduced model under either an effect-size prior or a Moment prior. Optionally, an interval null hypothesis can be specified.
BF10.f.test(fval, df1, df2, dff, rscale, f_m, prior_analysis, ROPE = NULL)
A list of class "BFvalue_f" containing:
"BFvalue_f"
fval
Input F-value.
df1
df2
Degrees of freedom.
ROPE
Interval bound (if specified).
analysis_h1
List containing the analysis prior specification, including the prior distribution, the scale rscale, f f_m, and degrees of freedom dff.
rscale
f_m
dff
bf10
The computed Bayes factor.
p.value
p-value.
Numeric scalar. Observed F statistic (must be at least 0).
Numeric scalar. Numerator degrees of freedom (must be > 0).
Numeric scalar. Denominator degrees of freedom (must be > 0).
Numeric scalar. Degrees of freedom for the analysis prior under the alternative hypothesis. For the Moment prior, this must be \(\ge 3\).
Numeric scalar. Scale parameter for the effect-size prior (only used when prior_analysis = "effectsize").
prior_analysis = "effectsize"
Numeric scalar. Cohen's f effect-size parameter for the analysis prior.
character. Analysis prior under the alternative hypothesis. Must be either "effectsize" or "Moment".
"effectsize"
"Moment"
Numeric scaler. Optional numeric scalar specifying an upper bound for an interval null hypothesis. If provided, must be > 0.
BF10.f.test( fval = 4.5, df1 = 2, df2 = 12, dff = 12, rscale = 0.707, f_m = 0.1, prior_analysis = "effectsize" )
Run the code above in your browser using DataLab