Computes the Bayes factor (BF10) for a one-sample t-test, comparing an observed t-value against either a point null hypothesis or an interval null hypothesis.
BF10.ttest.OneSample(
tval,
df,
prior_analysis,
location,
scale,
dff,
alternative,
ROPE = NULL
)A list of class BFvalue_t containing:
Character, indicating "One-sample t-test".
Numeric, the Bayes factor (BF10).
Observed t-value.
Degrees of freedom.
List with the analysis prior parameters: prior_analysis, location, scale, and optionally dff.
Character, the direction of the alternative hypothesis.
Optional numeric vector of interval null bounds.
Numeric, observed Cohen's d.
Numeric, p.value.
Numeric scalar. Observed t-value from the one-sample t-test.
Numeric scalar. Degrees of freedom of the t-test (must be >= 1).
Character string. Statistical model for the analysis prior under the alternative hypothesis. Choices are:
Normal distribution.
Normal moment prior.
Scaled t-distribution.
Numeric scalar. Location parameter for the analysis prior under the alternative hypothesis.
Numeric scalar. Scale parameter for the analysis prior under the alternative hypothesis (must be > 0).
Numeric scalar. Degrees of freedom for the t-distribution prior (only required if prior_analysis = "t-distribution"; must be > 0). Ignored otherwise.
Character string. The direction of the alternative hypothesis. One of:
Two-sided (difference from 0).
Right-sided (greater than 0).
Left-sided (less than 0).
Optional numeric vector. Specifies bounds for an interval null hypothesis. For:
"two.sided")Must be a numeric vector of length 2 with two distinct finite values.
"greater")Must be a numeric scalar > 0.
"less")Must be a numeric scalar < 0.
BF10.ttest.OneSample(
tval = 2,
df = 50,
prior_analysis = "t-distribution",
location = 0,
scale = 0.707,
dff = 1,
alternative = "two.sided")
Run the code above in your browser using DataLab