# NOT RUN {
library(BayesRGMM)
rm(list=ls(all=TRUE))
Fixed.Effs = c(-0.1, 0.1, -0.1) #c(-0.8, -0.3, 1.8, -0.4)
P = length(Fixed.Effs)
q = 1 #number of random effects
T = 7 #time points
N = 100 #number of subjects
Num.of.Cats = 3 #in KBLEE simulation studies, please fix it.
num.of.iter = 1000 #number of iterations
HSD.para = c(-0.9, -0.6) #the parameters in HSD model
a = length(HSD.para)
w = array(runif(T*T*a), c(T, T, a)) #design matrix in HSD model
for(time.diff in 1:a)
w[, , time.diff] = 1*(as.matrix(dist(1:T, 1:T, method="manhattan")) ==time.diff)
x = array(0, c(T, P, N))
for(i in 1:N){
#x[,, i] = t(rmvnorm(P, rep(0, T), AR1.cor(T, Cor.in.DesignMat)))
x[, 1, i] = 1:T
x[, 2, i] = rbinom(1, 1, 0.5)
x[, 3, i] = x[, 1, i]*x[, 2, i]
}
DesignMat = x
#Generate a data with HSD model
#MAR
CPREM.sim.data = SimulatedDataGenerator.CumulativeProbit(
Num.of.Obs = N, Num.of.TimePoints = T, Num.of.Cats = Num.of.Cats,
Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),
DesignMat = DesignMat, Missing = list(Missing.Mechanism = 2,
MissingRegCoefs=c(-0.7, -0.2, -0.1)),
HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))
print(table(CPREM.sim.data$sim.data$y))
print(CPREM.sim.data$classes)
BCP.output = BayesCumulativeProbitHSD(
fixed = as.formula(paste("y~", paste0("x", 1:P, collapse="+"))),
data=CPREM.sim.data$sim.data, random = ~ 1, Robustness = TRUE,
subset = NULL, na.action='na.exclude', HS.model = ~IndTime1+IndTime2,
hyper.params=NULL, num.of.iter=num.of.iter, Interactive=0)
BCP.Est.output = BayesRobustProbitSummary(BCP.output)
# }
Run the code above in your browser using DataLab