# NOT RUN {
library(BayesRGMM)
rm(list=ls(all=TRUE))
Fixed.Effs = c(-0.2, -0.3, 0.8, -0.4)
P = length(Fixed.Effs)
q = 1 #number of random effects
T = 5 #time points
N = 100 #number of subjects
num.of.iter = 100 #number of iterations
HSD.para = c(-0.5, -0.3) #the parameters in HSD model
a = length(HSD.para)
w = array(runif(T*T*a), c(T, T, a)) #design matrix in HSD model
for(time.diff in 1:a)
w[, , time.diff] = 1*(as.matrix(dist(1:T, 1:T, method="manhattan"))
==time.diff)
#Generate a data with HSD model
HSD.sim.data = SimulatedDataGenerator(Num.of.Obs = N, Num.of.TimePoints = T,
Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),
Cor.in.DesignMat = 0., Missing = list(Missing.Mechanism = 2,
RegCoefs = c(-1.5, 1.2)), Cor.Str = "HSD",
HSD.DesignMat.para = list(HSD.para = HSD.para, DesignMat = w))
#the proportion of 1's
ones = sum(HSD.sim.data$sim.data$y==1, na.rm=T)
num.of.obs = sum(!is.na(HSD.sim.data$sim.data$y))
print(ones/num.of.obs)
#the missing rate in the simulated data
print(sum(is.na(HSD.sim.data$sim.data$y)))
#===========================================================================#
#Generate a data with ARMA model
ARMA.sim.data = SimulatedDataGenerator(Num.of.Obs = N, Num.of.TimePoints = T,
Fixed.Effs = Fixed.Effs, Random.Effs = list(Sigma = 0.5*diag(1), df=3),
Cor.in.DesignMat = 0., list(Missing.Mechanism = 2, RegCoefs = c(-1.5, 1.2)),
Cor.Str = "ARMA", ARMA.para=list(AR.para = 0.8))
# }
Run the code above in your browser using DataLab