Learn R Programming

BayesRepDesign (version 0.42)

porsMeta: Probability of replication success based on meta-analytic significance

Description

This function computes the probability to achieve replication success on statistical significance of the fixed-effects meta-analytic effect estimate obtained from combining original and replication effect estimates.

Usage

porsMeta(level, dprior, sr)

Value

The probability to achieve replication success

Arguments

level

Significance level for p-value of the meta-analytic effect estimate (one-sided and in the same direction as the original effect estimate)

dprior

Design prior object

sr

Replication standard error

Author

Samuel Pawel

References

Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to designing replication studies. arXiv preprint. tools:::Rd_expr_doi("10.48550/arXiv.2211.02552")

Examples

Run this code
## specify design prior
to1 <- 2
so1 <- 1
dprior <- designPrior(to = to1, so = so1, tau = 0.1)
porsMeta(level = 0.025^2, dprior = dprior, sr = c(0.2, 0.1))

Run the code above in your browser using DataLab