# \donttest{
simdata2 <- data.frame(DATA1$X, y = DATA1$y)
# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,
niter = 5000, nburnin = 1000, nchain = 1)
# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)
# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")
# Residuals of median prediction
residuals(fit_one, method = "median")
# Summary of the model
summary(fit_one)
# Convergence diagnostics
nimTraceplot(fit_one)
# Goodness of fit
GOF(fit_one)
# Fitted plot
plot(fit_one)
# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)
# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,
nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)
# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)
# }
Run the code above in your browser using DataLab