
plot method for class BayesSUR
. This is the main plot function to be
called by the user. This function calls one or several of the following
functions: plotEstimator()
, plotGraph()
, plotMCMCdiag()
,
plotManhattan()
, plotNetwork()
, plotCPO()
.
# S3 method for BayesSUR
plot(x, estimator = NULL, type = NULL, ...)
an object of class BayesSUR
It is in c(NULL, 'beta', 'gamma', 'Gy', 'logP', 'CPO')
and works by combining with argument type
.
If estimator
is in c("beta", "gamma", "Gy")
and
argument type="heatmap"
, it prints heatmaps of the specified
estimator in estimator
by a call to to function
plotEstimator()
for more other arguments.
If estimator="Gy"
and argument type="graph"
, it prints
a structure graph of "Gy"
by a call to function plotGraph()
for more other arguments.
If estimator=c("gamma", "Gy")
and argument
type="network"
, it prints the estimated network between the
response variables and predictors with nonzero coefficients by a call to
function plotMCMCdiag()
for more other arguments.
If estimator=NULL
(default) and type=NULL
(default),
it interactively prints the plots of estimators (i.e., beta, gamma
and (or) Gy), response graph Gy, network, Manhattan and MCMC diagnostics.
It is one of NULL
, "heatmap"
, "graph"
,
"network"
, "Manhattan"
and "diagnostics"
, and works by
combining with argument estimator
.
If type="Manhattan"
and argument estimator="gamma"
,
it prints Manhattan-like plots for marginal posterior inclusion
probabilities (mPIP) and numbers of associated response variables for
individual predictors by a call to function plotManhattan()
for
more other arguments.
If type="diagnostics"
and argument estimator="logP"
it shows trace plots and diagnostic density plots of a fitted model by a
call to function plotMCMCdiag()
for more other arguments.
If type="diagnostics"
and argument estimator="CPO"
,
it shows the conditional predictive ordinate (CPO) for each individual of
a fitted model by a call to function plotCPO()
for more other arguments.
other arguments, see functions plotEstimator()
,
plotGraph()
, plotNetwork()
, plotManhattan()
,
plotMCMCdiag()
or plotCPO()
data("exampleEQTL", package = "BayesSUR")
hyperpar <- list(a_w = 2, b_w = 5)
set.seed(9173)
fit <- BayesSUR(
Y = exampleEQTL[["blockList"]][[1]],
X = exampleEQTL[["blockList"]][[2]],
data = exampleEQTL[["data"]], outFilePath = tempdir(),
nIter = 2, burnin = 0, nChains = 1, gammaPrior = "hotspot",
hyperpar = hyperpar, tmpFolder = "tmp/"
)
## check output
if (FALSE) {
## Show the interactive plots. Note that it needs at least 2000*(nbloc+1) iterations
## for the diagnostic plots where nbloc=3 by default
# plot(fit)
}
## plot heatmaps of the estimated beta, gamma and Gy
plot(fit, estimator = c("beta", "gamma", "Gy"), type = "heatmap")
## plot estimated graph of responses Gy
plot(fit, estimator = "Gy", type = "graph")
## plot network between response variables and associated predictors
plot(fit, estimator = c("gamma", "Gy"), type = "network")
## print Manhattan-like plots
plot(fit, estimator = "gamma", type = "Manhattan")
## print MCMC diagnostic plots
#plot(fit, estimator = "logP", type = "diagnostics")
Run the code above in your browser using DataLab