This an internal function for MCMC sampling
func_MCMC(
survObj,
hyperpar,
ini,
nIter,
thin,
burnin,
S,
method,
MRF_2b,
MRF_G,
output_graph_para,
verbose,
cpp = FALSE
)
A list object saving the MCMC results with components including 'gamma.p', 'beta.p', 'h.p', 'gamma.margin', 'beta.margin', 's', 'eta0', 'kappa0', 'c0', 'pi.ga', 'tau', 'cb', 'accept.RW', 'log.jpost', 'log.like', 'post.gamma'
a list containing observed data from n
subjects;
t
, di
, X
. See details for more information
a list containing prior parameter values
a list containing prior parameters' initial values
the number of iterations of the chain
thinning MCMC intermediate results to be stored
number of iterations to discard at the start of the chain. Default is 0
the number of subgroups
a method option from
c("Pooled", "CoxBVSSL", "Sub-struct")
two different b in MRF prior for subgraphs G_ss and G_rs
logical value. MRF_G = TRUE
is to fix the MRF graph which
is provided in the argument hyperpar
, and MRF_G = FALSE
is to
use graphical model for learning the MRF graph
allow (TRUE
) or suppress (FALSE
) the
output for parameters 'G', 'V', 'C' and 'Sig' in the graphical model
if MRF_G = FALSE
logical value to display the progress of MCMC
logical, whether to use C++ code for faster computation